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Executive Summary 

The use of digital instrumentation and control (I&C) systems within commercial nuclear 

power plants raises cybersecurity concern in the nuclear industry, with an increasing need for 

high fidelity cybersecurity analyses of the I&C architectures within nuclear power plants. To 

meet this need, the Nuclear Instrumentation & Control Simulation (NICSim) platform is 

currently being developed at the University of New Mexico’s Institute for Space and Nuclear 

Power Studies (UNM-ISNPS) in collaboration with Sandia National Laboratories (SNL), under a 

DOE NEUP award. It aims to develop a platform that couples emulation and simulation models 

of the digital I&C system components to a dynamic model of a PWR power plant. This 

capability would enable cybersecurity investigations of the safety I&C systems of commercial 

nuclear power plants. 

The development of the NICSim platform requires developing a validated programmable 

logic controllers (PLC) emulation methodology for modeling different controllers within the 

nuclear power plant’s I&C architecture. Thus, a communication interface is needed to link the 

emulated PLCs to a physics-based model of the nuclear plant, which is the primary focus of this 

project. The work presented in this progress report helps address this need by developing and 

validating a PLC emulation methodology and developing a reliable, fast-running interface that 

effectively links a PLC to a physics-based simulation model within Matlab Simulink framework. 

The developed emulation methodology characterizes the PLC’s digital and physical 

signatures. It also validates the emulated PLC that its behavior matches that of the real hardware. 

The validation results show the actuation responses, sampling rates, and network responses of 

the emulated PLC are indistinguishable from those of the real PLC. From a cybersecurity 

perspective, the PLC emulation runs the same operating system and software, uses the same 

communication protocols, and generates the same types and proportions of network traffic data 

as the real device. The developed data transfer interface links a PLC and the Simulink model, 

transmitting the state variables to the PLC and transmitting back the generated control signals to 

actuate system within the simulation. Testing different communication methods reveals that the 

shared memory method performs the best. It is fast, reliable, and synchronous. The effectiveness 

of this interface is successfully demonstrated for linking a PLC to a Matlab Simulink, physics-

based, dynamic model of an integrated space nuclear reactor power system. The results are 

indistinguishable from those generated using internal Simulink control logic. 
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1. Introduction 

In this and past decades targeted cyber-attacks on critical energy infrastructure have occurred 

on Industrial Control System (ICS) networks, including prominent attack campaigns such as 

Stuxnet, Havex, BlackEnergy III, and CrashOverride (Dragos Inc. 2017; Karnouskos 2011). The 

consequences of these attacks have shown that malicious cyber-attacks can be deployed and 

developed to destabilize and disable specialized industrial computing equipment. These digital 

control systems rely on specialized computers, such as Programmable Logic Controllers (PLCs), 

for monitoring and autonomous control of key processes. Unlike enterprise IT networks, ICS 

networks frequently do not have the same cybersecurity safeguards and defensive technologies 

that have been developed to confront increasingly sophisticated cyber-attacks in the field of 

enterprise IT. 

The increasing use of digital instrumentation and control (I&C) systems within commercial 

nuclear power plants makes the cybersecurity a major concern in the nuclear industry (National 

Research Council 1997; Korsah, et al. 2008). A targeted cyber-attack against a nuclear power 

plant could potentially have severe consequences to operation and safety. The recent infiltration 

of Wolf Creek’s business network in 2018, a Westinghouse PWR in Kansas, demonstrates the 

ever present and evolving cyber threat to nuclear power plants in the United States (Perlroth 

2019). As future plants are being designed with mostly or all digital I&C infrastructure there is 

an increasing need for high fidelity cybersecurity measures and detailed analyses of I&C 

architectures for nuclear power plants. 

The Nuclear Instrumentation & Control Simulation (NICSim) platform currently being 

developed at the University of New Mexico’s Institute for Space and Nuclear Power Studies 

(UNM-ISNPS) in collaboration with Sandia National Laboratories (SNL), under a DOE NEUP 

award, aims to address the current needs. It aims to develop emulytics capabilities and couple 

emulation and simulation models of digital I&C system components to a dynamic model of a 

nuclear power plant to enable cybersecurity investigations of the I&C systems. This platform 

will be implemented into the Department of Energy’s (DOE’s) SCEPTRE emulation framework 

(Sandia National Laboratories 2016), first developed to deal with cyber-attacks on energy grids, 

to emulate and simulate I&C system architectures in nuclear power plants. The NICSim platform 

will include models of the digital PLCs which control many of the autonomous control and 

safety system actuation processes within modern nuclear power plants. The emulated and 
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simulated I&C components will be linked to a physics-based dynamic model of a commercial 

Pressurized Water Reactor (PWR) nuclear power plant for direct feedback of its behavior and 

response of the integrated I&C systems. This dynamic model will include representative 

submodels of different sensors in the plant to simulate the measurement signal responses of the 

instruments to the PLCs. 

1.1. Objectives 

The development of the NICSim platform requires validated emulation of representative 

PLCs for use in modeling different autonomous operation and safety controllers within the 

plant’s I&C architecture. Additionally, implementing the emulated PLCs in conjunction with the 

nuclear plant simulation model requires the development of an inter-process communication 

program to function as an interface between the PLCs and the plant simulation model. This 

report is the first step to fulfill these needs by developing and validating an emulation 

methodology for modeling the PLCs within the I&C system. This is in addition to implementing 

linking the PLC to a transient simulation of a nuclear power plant using a fast-running and robust 

interface. The validated PLC emulation methodology methods can then be implemented in the 

SCEPTRE framework and used to emulate the PLCs within the safety I&C system architecture 

of the nuclear power plant. The developed interface program will be utilized in the NICSim 

platform to link the dynamic model of the PWR plant to the PLCs within the SCEPTRE 

framework. 

Section 2 - Validation of an Emulation Methodology of a Programmable Logic Controller, 

describes the results of the effort on the validation of an emulation methodology of a PLC. A 

PLC emulation methodology is first developed to characterize the key physical and digital 

signatures of the PLC and conduct testing to validate these signatures against those of an 

emulated PLC. The performed validation testing is conducted to determine the settings required 

to ensure that the performance of the emulated PLC will replicate that of the physical device and 

replicate its digital network traffic behavior. The developed emulation methodology is first used 

to create an emulation of a single representative open-source PLC based on a Raspberry Pi 3B+ 

minicomputer running OpenPLC software. Validation testing is conducted which investigated the 

physical and digital signatures of the PLC, while linked to a transient process simulation model 

built using the Matlab Simulink platform (The MathWorks 2018).  



10 

 

Section 3 - Methods of Interfacing Physics Based Nuclear Power System Model with 

PLCs, describes the results on the effort to develop an effective interface to handle the inter-

process communication between the validated PLC emulation and a nuclear plant simulation 

model when implemented together as a combined simulation platform. The developed interface 

enables the communication of simulation state variables and controller command signals 

between the PLC and a dynamic simulation model running within Matlab Simulink. This 

research effort investigates four methods of inter-process communication, including (a) 

reading/writing to text files, (b) serial communication, (c) TCP communication, and (d) shared 

memory. The different communication methods are compared to determine which provides the 

best combination of performance, reliability, and fidelity. The developed interface program is 

then demonstrated by linking a representative PLC using OpenPLC ladder logic programming 

with the previously developed DynMo-CBC dynamic simulation model of a space nuclear power 

system comprised of a gas-cooled fast-neutron spectrum nuclear reactor with Closed-Brayton-

Cycle (CBC) energy conversion (El-Genk, Tournier, Gallo 2010). The PLC in the demonstration 

example is used to start up of the space nuclear power system by controlling the movement of 

the reactors’ control elements. 

Section 4 - Summary and Conclusions summarizes the results described in this progress 

report and Section 5 - Future Application to NICSim Project details how the results of the 

research described in this progress report will be applied the future tasks in this DOE NEUP 

project. The next task in this project will employ the developed PLC emulation model to 

represent the different automatic operation and safety PLC within the nuclear plant safety I&C 

system, developing the control programming to run on the different PLC within the I&C 

architecture. A parallel planned task will employ the developed interface to connect the nuclear 

plant simulation component submodels and instrumentation sensor and control submodels under 

development in that task with the SCEPTRE framework. The portion of the report describing the 

validation of an emulation methodology of a programmable logic controller is presented next. 
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2. Validation of an Emulation Methodology of a Programmable Logic 

Controller 

In this section, an emulation methodology is developed for programmable logic controllers 

(PLCs) to support future cybersecurity analyses for Industrial Control Systems (ICS) such as the 

autonomous safety instrumentation and control systems of nuclear power plants. This emulation 

methodology identifies and characterizes key physical and digital signatures for the selected 

PLC. The selected digital signature metrics of a PLC include its network response, network 

traffic, and software versions. The selected physical signature metrics for the PLC include the 

actuation response time and sampling rate. This work applies this methodology for an open-

source PLC implementation consisting of a Raspberry Pi 3B+ minicomputer with OpenPLC to 

run the ladder logic programming. An extensive validation analysis is performed to characterize 

the signatures of the real PLC and compare them to those of the emulated PLC.  

2.1. Background 

Emulated computer systems, also referred to as virtual machines (VMs), are commonly used 

to perform controlled security experiments in a contained virtual environment in cybersecurity 

analyses for enterprise IT systems. The Department of Energy’s SCEPTRE framework, 

developed at SNL to enable cybersecurity analyses of ICS, is capable of starting up and handling 

the virtual network communication using real ICS protocols between large numbers of VMs 

representing different computers within ICS architectures. While this framework has been used 

to model digital components of electrical transmission grids and solar power systems, it has not 

yet been applied to cybersecurity of nuclear power plants. Extending the SCEPTRE framework 

to modeling the safety instrumentation and control (I&C) systems of nuclear power plants 

requires the development of emulation models for the PLCs used for autonomous control and the 

safety system actuation within the plant. 

The development of PLC emulation will enable in-depth cybersecurity and physical effect 

modeling of ICS architectures, such as I&C systems of nuclear reactors without hardware-in-the-

loop (HITL) integration. In a HITL setup, a physical PLC is integrated into the digital network 

being tested. Experiments that use PLCs as HITL are expensive, difficult to scale and change 

relative to emulated systems. Running an experiment on an entire I&C system architecture, 

which may include dozens of devices, can become impractical if HITL must be used for every 

digital device in the plant. A PLC emulation methodology, thus, provides a practical path 
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forward to study current I&C architectures of nuclear power plants and aid in the design of more 

secure architectures for future power plants designs. 

Most efforts to develop emulation models or virtual machines (VMs) for PLCs have focused 

mainly on developing virtualization platforms for PLC programming and not virtualization of the 

computer system. For example, Chunjie and Hui (2009) have investigated developing a PLC VM 

based on IEC 61131-3 standard PLC programing. This VM was intended to run on the PLCs 

themselves to create a platform that supports running common programing based on the IEC 

61131-3 standard, across different hardware designs. While capable of running PLC control 

programming, the developed VM was not designed to replicate the characteristics of a specific 

PLC. Thamrin and Ismail (2011) also developed a VM for PLCs to create a development 

environment for PLC programming. This VM development environment was planned to help 

train programmers in the specialized programming languages used by PLCs. The VM also 

focused on only running the PLC’s control programming and not creating a system level virtual 

machine of a PLC. Gasser (2013) also developed a VM testing environment for using 

standardized PLC programming across different PLC hardware, similar to Chunjie and Hui 

(2009). This effort involved extensive testing was performed to characterize the performance of 

the VM running on the PLC hardware. 

None of these prior efforts were aimed at creating an emulated PLC capable of replicating 

both the physical performance and the digital network behavior of a physical PLC, needed for 

cybersecurity applications. Thus, the objective of the present work is to develop an emulation 

methodology for a PLC and establish metrics to validate the developed emulated PLC. This 

emulation methodology is applied to a representative open-source PLC implementation, and the 

emulated PLC is validated against the recorded physical and digital signatures of the real, 

physical PLC hardware. The validated PLC emulation methodology will be incorporated in the 

DOE SCEPTRE framework to support cybersecurity investigations of I&C system architectures 

in nuclear power plants. The next section details the developed and validated PLC emulation 

methodology in this work. 

2.2 PLC Emulation Methodology 

Table 2.1 outlines the general steps of the PLC emulation methodology. Emulating a PLC 

implies that the digital and physical behavior of the PLC is reproduced by another system 

through computational means. The degree of emulation is determined by the project 
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requirements. A full emulation would reproduce the functionality of the hardware, firmware, 

operating system kernel, and the software used by the PLC. A partial emulation would replicate 

only some of these functionalities. Investigations of potential vulnerabilities within software 

programs or the computer’s operating system might only require kernel and software emulation, 

while investigating potential exploits of vulnerabilities in a chipset’s instruction set could require 

full emulation at the hardware and firmware levels. Several partial emulators of computer 

systems are available which emulate the kernel and software of a device. Full emulators, 

however, are far less common due to the drastic increase in complexity.  

Table .2.1: Steps within General PLC Emulation Methodology 

Step Action 

1 Determine the degree of emulation required 

2 Use commercial/Open-source emulation software or develop the emulation as needed 

3 Characterize the physical and digital signatures of the PLC to be emulated 

4 Benchmark characterized signatures of the emulated PLC against the real PLC using a 

representative test environment to validate the emulation 

5 Make changes within the emulation configuration as needed until the signatures of the 

real and emulated PLCs agree to within an acceptable margin for the project 

requirements 

 

The present work requires that the emulated PLC approximate the real PLC, such that the 

differences between the two systems do not affect the behavior of the connected physics model 

and could support planned cybersecurity analysis. For the present project, this is accomplished 

using kernel and software emulation. In addition, the real and emulated systems should be 

interchangeable and not impacted by the computer hardware running the emulation.  

Once a PLC emulation is successfully developed, it is validated against the real system. 

When obscuring the firmware and the underlining hardware of a PLC, the only way to determine 

if a PLC is real or emulation is to observe the digital and physical signatures of the device. Table 

2.2 shows the signature metrics used to validate the PLC emulation. The selected digital 

signature metrics of a PLC include the network response, the network traffic, and the software 

versions. The network response of a device quantifies how the network traffic is transmitted and 
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received, and determines the rate of data transfer. Similarly, the underlying network traffic for the 

system determines the type and frequency of the network data packets being transmitted and/or 

received. Finally, the software versions determine if the exact same software is running on the 

emulated and real device. If a cybersecurity flaw exists in the software, it should be exploitable 

on both the real and emulated PLC in exactly the same manner. 

Table 2.2: Chosen metrics used to validate PLC emulation 

Digital Signatures: 

- Network response 

- Network traffic 

- Software versions 

Physical Signatures: 

- Actuation response time 

- Sampling rate 

The selected physical signature metrics for the PLC include the actuation response time and 

sampling rate (Table 2.2). The actuation response time is that for a PLC to receive data, compute 

an output, and send an actuation signal. Differing actuation response times would lead to 

different physical outcomes, by influencing the time history of the physical process. Similarly, 

the sampling rate of a digital controller would affect the process being controlled by influencing 

the gain values of complex controller designs affected by the time history of the process. For 

controllers not using control algorithms that are dependent on the sampling rate, such as a simple 

switch or trip condition, only the actuation response time would be relevant.  

The digital signature metrics are important from a cybersecurity perspective, while the 

physical signature metrics determines the fidelity of the PLC’s response to the connected 

process. Since PLCs are the interface between the physical and digital world it is paramount that 

the signatures of the emulated and real PLC be quantified to validate the cyber-physical coupling 

of the emulation. 

2.2.1 Testing Methodology 

The developed emulation methodology for PLCs is performed and validated using a 

representative, open-source PLC architecture consisting of a Raspberry Pi 3 B+ minicomputer 

running the OpenPLC software, implementing IEC 61131-3 standard programming for PLCs 

(Alves et al. 2014). The Raspberry Pi is chosen because of the availability of its open source 
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operating system to create images, the functionality of its on-board digital/analog IO, 

compatibility with OpenPLC, and the ability to emulate the operating system. The specifications 

of the real and emulated PLCs are summarized in Table 2.3. VMware emulation software 

(VMWare 2019) is used to emulate the Raspbian kernel and software for the emulated PLC. Both 

the real and emulated PLCs run the same operating system and OpenPLC software. To reduce 

the differences between the Raspberry Pi 3B+ hardware and the PC running the VMware 

emulation software, one gigabyte of Ram and two processor cores are allocated to the emulated 

PLC in VMware. 

Table 2.3: Real and Emulated PLC Specifications 

System Real PLC Emulated PLC 

Hardware Raspberry Pi 3 B+ VMware Virtual Machine 

CPU Cortex-A53 64-bit SoC @ 1.4Ghz 
AMD FX-8370 64-bit CPU @ 

4.3Ghz (2 virtual cores) 

Ram 1Gb 1Gb 

Operating System Raspbian Stretch 4.14.79 Raspbian Stretch 4.14.79 

Control Software OpenPLC Version 3 OpenPLC Version 3 

Network Interface Gigabit Ethernet over USB 2.0 Gigabit Ethernet 

 

The used testing environment to validate the PLC emulation against the physical hardware 

links the real or emulated PLC to a transient simulation model running in Matlab Simulink (The 

MathWorks 2018) (Fig. 2.1). The Simulink simulation model running on a separate Windows 

server PC takes the place of the external physical process being controlled by the PLC within the 

testing environment. An interface program is developed to handle the inter-process 

communication of data values between the Matlab Simulink simulation model and the remote 

PLC. The interface communicates state variables generated within the Simulink simulation to a 

python script using a text file (Fig. 2.1). A second text file is used to transfer the control signals 

generated by the PLC into the running Simulink simulation. More details on the developed 

interface with Simulink are discussed subsequently in Section 3.  

The python interface program also creates a TCP/IP server to communicate with the PLC, 

either the Raspbian image running in the VMware emulation or the physical Raspberry Pi. Each 

PLC uses Raspbian Stretch 4.14.79 to run a client python script which communicates with the 

python interface program running on the server PC. This client python script communicates the 
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state variables and control signals to and from the OpenPLC software using the Modbus ICS 

communication protocol implemented within the PyModbus library (Collins, 2019). The inter-

process communication programs used in these analyses are asynchronous with the Simulink 

simulation, with the python programs running at a rate ~ 10 times that of the transient Simulink 

model.  

 

Figure 2.1: Linking block diagram for test system showing data flow between Simulink 

simulation model and Raspberry Pi PLC using python “wrapper” interface program. 

 

Figure 2.2 shows the components of the test network used for testing and validation. The test 

network is a simple ethernet network. It consists of a server PC, which is the computer running 

the Simulink model, a UniFi switch, and a PLC. For each experiment, only one PLC is connected 

to the UniFi switch at a time. The Simulink simulation model within the benchmark testing 

environment generates a sine wave, Eq. 2.1, which provides state variable input to the PLC as:  

𝑓(𝑡) = sin (
𝜋

2
𝑡) + 1.         (2.1) 

The sine wave runs in sync with real time, is outputted by the server PC and sent to a switch to 

be routed to the PLC. An isolated testing network with a managed switch was used to eliminate 

network routing differences during the testing between the real and emulated PLC. The local 

Dynamic Host Configuration Protocol (DHCP) server handling the IP addresses for the isolated 
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network was run on server PC. The Wireshark (Wireshark 2019) utility was used to capture the 

network data traffic between the server PC and real or emulated PLC.  

 

Figure 2.2: Overview of real and emulated PLC comparison experimental setup.  

When the PLC receives a new value from the server, the implemented ladder logic 

programming in OpenPLC determines if the sine wave is above or below the set point. Using a 

set point value of 1.2, results in a trip signal value of one if the sine wave value greater than the 

set point, and a value of 0 if it is below the set point. With the generated sine wave this should 

result in a trip signal period for 1.74 seconds followed by a null period of 2.26 seconds for each 

wave. The total simulation length for each run was 300 s. Except when noted the OpenPLC 

program running on either the emulated or real PLC used a sampling period of 50 ms. The 

actuation response of the PLC is routed back the server PC in the opposite direction creating the 

square wave seen in the lower left of Fig. 2.2.  
 

2.3. Validation Results of the PLC Emulation Methodology 

The following sections describe the results of the validation testing characterizing the 

signatures of the physical PLC and comparing them against the developed PLC emulation. First 

in Section 2.3.1, an analysis is performed investigating the real-time condition of the linked 

Simulink simulation and PLC. Sections 2.3.2 and 2.3.3 present the validation testing of the 

digital signatures of the emulated PLC. Section 2.3.2 presents the results of the network response 
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comparison and Section 2.3.3 shows the results comparing the network data packet traffic. 

Sections 2.3.4 and 2.3.5 present the validation testing for the Physical Signatures, showing the 

results of the actuation response time and sampling rate, respectively. 

2.3.1 Real-Time Condition 

The simulation model runs in sync with real time using Simulink Real-Time Desktop (The 

MathWorks 2018) to ensure that both the real and emulated controllers receive the same values 

from the simulation at the same rate. Real-Time synchronization is required for comparing the 

real PLC and Emulated PLC. If the simulation process operates at a different rate, it will affect 

the actuation response time of the controller. For example, if the simulation for the real PLC runs 

at a slower rate, it is possible that the real PLC will record a faster actuation response time 

relative to the emulated PLC. Real-time synchronization helps ensure that the rate and exact time 

of the simulation response from the different PLCs are not affected by time differences in the 

simulated process. 

 

Figure 2.3: Emulated PLC real-time sync lag.  

To investigate how the timestep size impacted the real-time synchronization, Simulink 

simulations are run with major time steps of 75, 100, and 200 ms. The real time tolerance within 

the Simulink Real-Time Synch feature is set so that if more than one CPU tick is missed in a 

row, the simulation exits and the experiment is restarted. Figs. 2.3 and 2.4 show that both the 

Emulated PLC 75 ms timestep

Emulated PLC 100 ms timestep

Emulated PLC 200 ms timestep
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emulated and real PLCs produced a small number of deviation events from being in sync with 

real time. The simulations that used a major time step of 200 ms, however, did not experience 

any deviation from real time.  

 

Figure 2.4: Real PLC real-time sync lag.  

A deviation from real-time causes the controller to miss a timestep, and the error catching 

routine makes the controller use the previous values until the next timestep updates the state 

variables. A missed data point thus delays the response of a controller by one timestep. The data 

for the emulated PLC using 100 ms major time step recorded a single deviation at time = 8.7 s 

(Fig. 2.3). Two deviations occurred for the emulated PLC using 75 ms major time steps at 

simulation times = 6.3s and 216.4s. The results for the real PLC recorded a single deviation at 

time = 5.7s when using a major time step of 100 ms (Fig. 2.4). For the simulations with 

timesteps of 75 and 100 ms, deviations from real-time occurred less than 0.1% of all simulation 

time steps. 

For the most realistic simulation of a PLC controlling a physical process, the major fixed 

timestep of the simulation needs to be much less than the response time of the PLC running in 

sync with real-time. When the simulation is running slower than the response time of the PLC, 

the fidelity of the simulated process is low. For validation of the testing setup, using timestep 

Real PLC 75 ms timestep

Real PLC 100 ms timestep

Real PLC 200 ms timestep
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sizes of 75 and 100 ms result in a few deviations from synchronization, while for a timestep of at 

least 200 ms, no deviations are observed. 

 

Figure 2.5: Round trip time of TCP packets for the a) emulated PLC and b) real PLC.  

2.3.2 Network Response  

The network response characteristics of the emulated and real PLCs are collected using 

Wireshark for packet capture (PCAP) of the network communication between the server PC and 

Emulated PLC 75 ms timestep

Emulated PLC 100 ms timestep

Emulated PLC 200 ms timestep

Real PLC 75 ms timestep

Real PLC 100 ms timestep

Real PLC 200 ms timestep

a

b
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the PLC. The PCAP software is run on the server PC for all simulation cases. The network 

response of the emulated and real PLCs is evaluated by comparing the TCP packet round-trip 

time and the network statistics for the TCP/IP socket communication between the Server PC and 

real or emulated PLC. The network round trip time is important because the slowest exchange of 

TCP packets determines the physical limit of outputting the data by the simulation to the PLC. 

Therefore, the lower limit of the sampling time for the PLC is that of the slowest communication 

of data from the server to the client. In other environments, the communication method may be 

different from the TCP/IP communication used here, but the underlining principle of quantifying 

the rate at which data can be transferred to quantify the network response remains pertinent. 

 

Figure 2.6: Comparison of the round-trip time of TCP packets for the Real and Emulated PLC 

 

The network response of the emulated PLC is shown in Fig. 2.5a, and the network response 

of the real PLC is shown in Fig. 2.5b. Simulation cases are run with major timesteps of 75, 100, 

and 200 ms to evaluate the effect of the simulation timestep on the network response. It is 

observed that the simulation time step does not affect the network response for both the real and 

emulated PLCs (Fig. 2.5a-b). Both controllers exhibit two spaced peaks in the probability 

distribution of the TCP packet round trip time between 0 and 5 ms. Nearly all packets fall within 

this time range when using the emulated PLC. In contrast, the real PLC has a small number of 

Real PLC 100 ms timestep

Emulated PLC 100 ms timestep
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slower TCP packets, which make up a distinct second cluster of packets that are transferred at a 

rate between 35 ms and 45 ms. 

Figure 2.6 directly compares the real and emulated network traffic for a Simulink simulation 

time step of 0.1s. The most probably round trip time of the emulated and real PLCs is the same, 

with peaks clearly overlapping (Fig. 2.6). The second of the two peaks in the 0-5 ms range in the 

probability distributions for the two PLCs occurs at a slightly shorter round-trip time for the 

emulated PLC compared to the real PLC (Fig. 2.6). The peak representing the group of slower 

packets is seen in the data for the real PLC, but not by the emulated PLC.  

 

Figure 2.7: Raspberry Pi units used in the network response identification tests. Raspberry Pi 

number 1 is the same unit which was used in the real and emulated PLC comparison.  

The testing using multiple Raspberry Pi’s is used to determine if the small observed group of 

packets of times from 35 ms and 45 ms is unique to the specific Raspberry Pi initially used for 

benchmarking, or it is characteristic to the that computer model. Three, identical Raspberry Pi 3 

B+ (Fig. 2.7) units are used to investigate the network response of the Raspberry Pi. The same 

setup in the PLC comparison is used to measure the network response of the three separate 

Raspberry Pi units. A simulation fixed time of 100 ms is used in this experiment. To avoid any 

discrepancies between the pace of the simulation, all experiments are run using Simulink Real-

Time and the tolerance is set to one missed CPU tick. Deviations from real-time sync are 

negligible; it is also observed that the deviations from real-time sync corresponded with a missed 

data point over a 300 s simulation run time.  

Since all three Raspberry Pi units had the same simulation conditions, input, and actuation 

response, the normalized packet round-trip time in Fig. 2.8 are compared directly. The captured 

network data for all three units has the same TCP packet round trip time distribution, including 

the isolated peak of slower data packets of times of 35 ms to 45 ms. These results suggest that 
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this cluster of relatively slow packets is a characteristic of the Raspberry Pi 3B+.  The same 

effect is not observed on the emulated PLC using the network card of the computer facilitating 

the emulation. 

 

Figure 2.8: Normalized packet round-trip time distribution for Raspberry Pi units 1-3.   

In addition to the packet round trip time, the data throughput of the emulated and real PLC is 

captured, and the statistics are summarized in Table 2.4. The emulated PLC has a significantly 

higher data transfer rate relative to the real PLC. This difference is due to the fact that the 

hardware used by the emulated PLC has a higher bandwidth than the real PLC. The results in 

Figs. 2.5 and 2.6 show, however, that higher bandwidth does not result in faster communication 

speeds in the validation testing setup. For both the emulated and real PLCs the majority of the 

packets sent during the experiment had communication speeds faster than 10 ms.  

2.3.3 Network traffic  

The collected packet capture data is analyzed to determine the types of packets sent during 

the experiment. The data for all experiments was combined for the real and emulated PLC to 

decrease the differences in the time of day each experiment is ran. It is possible that some 

programs will send out network communication based on the time of day or the current state of 

the operating system. The numbers and categories of data packets collected by the Wireshark 

utility are given in Table 2.5 for the emulated PLC and Table 6 for the real PLC tested. The vast 

Raspberry Pi 1

Raspberry Pi 2

Raspberry Pi 3
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majority (> 98%) of the collected data packets are TCP packets (Table 2.5). The fraction of the 

total packets collected in each category between real and emulated PLCs differed by < 1%.  

The network traffic signatures for the emulated PLC are determined to be comparable to the 

real PLC with the exception of the bandwidth. The collected network packet data in Table 2.5 

shows, however, that the emulated PLC is able to use the same network protocols and generate 

packets of the same data types and with similar proportions to the total level of network traffic as 

the real PLC. These similarities in types and proportions of network traffic are important for the 

capability of the emulated PLC to represent the real PLC in cyber-security investigations. 

Table 2.4: Captured data transfer rate for the emulated and real PLC 

Item Data  for Emulated PLC / Real PLC 

Measurement 0.075s Time Step 0.1s Time Step 0.2s Time Step 

Packets 131,354 / 35,952 132,544 / 34,126 133,548 / 35,419 

Time Span, s 295.63 / 296.92 295.63 / 295.52 295.63 / 294.71 

Average Packets Per 

Second 
444.3 / 121.1 448.3 / 115.5 451.5 / 120.2 

Average Packet Size, 

Bytes 
71 / 72 71 / 72 71 / 72 

Average Bytes/s 31 k / 8.7 k 31 k / 8.3 k 31 k / 8.6 k 

 

2.3.4 Actuation Response Time 

An important physical signature to measure for quantifying the performance of a PLC is the 

actuation response time. The actuation response time is defined here as the time it takes for the 

PLC to execute a control action based on the inputs being sampled from the process being 

controlled. To determine if the observed actuation response deviates from an ideal response, 

internal logic in the Simulink simulation model is used to generate a ‘true’ response signal. This 

ideal ‘true’ signal is recorded internally by Matlab Simulink and not dependent on the signals 

transmitted to and received from the PLC.  

Thus, the ideal response represents a control action with zero time lag relative to the process 

simulation. The ideal response is compared against the generated responses of the real or 

emulated PLC to quantify any time lag in response time due to network communication or 

differences in PLC computational time. First, the state variable signal received by the PLCs is 

compared to the original signal generated by the Simulink model to verify that the real and 
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emulated PLCs are receiving the same and correct input data. Fig. 2.9a-c shows the result for 

simulation major timesteps of 75, 100, and 200 ms. For each case, the OpenPLC program on the 

real and emulated PLC operates at a sampling rate of 50 ms. The results show that the real and 

emulated PLCs receive the same Sine wave signal (Eq. 2.1) generated by the Simulink model 

with the lines falling on top of one another. This excellent agreement is consistent for the three 

Simulink simulation timestep values tested (Fig. 2.9a-c). 

Table 2.5: Wireshark network PCAP data results for different packet types and their relative 

proportions for the emulated and real PLCs 

Packet Data Type 
Emulated PLC percent of total 

packets (number of packets recorded) 

Real PLC percent of total packets 

(number of packets recorded) 

ARP 0.14%, (554) 0.66%, (690) 

BROWSER 0.00%, (6) 0.02%, (20) 

CLASSIC-

STUN 
0.02%, (60) 0.05%, (59) 

DHCP 0.01%, (23) 0.00%, (0) 

DNS 0.10%, (388) 0.00%, (0) 

HTTP 0.05%, (213) 0.21%, (228) 

ICMP 0.00%, (4) 0.00% 

ICMPv6 0.00%, (9) 0.00% 

LANMAN 0.00%, (8) 0.00% 

LLDP 0.01%, (32) 0.03%, (30) 

LLMNR 0.01%, (37) 0.01%, (8) 

MDNS 0.00%, (2) 0.00%, (0) 

NBSS 0.00%, (4) 0.00%, (0) 

SMB 0.01%, (24) 0.00%, (0) 

SSDP 0.02%, (77) 0.03%, (28) 

STP 0.11%, (444) 0.42%, (449) 

TCP 99.46%, (395,316) 98.56%, (103,984) 

UDP 0.00%, (16) 0.00%, (0) 

NBNS 0.06%, (222) 0.01%, (11) 

NTP 0.00%, (7) 0.00%, (1) 

DHCPv6 0.00%, (7) 0.00%, (0) 
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Figure 2.9: Data input to the real and emulated PLC compared to the sine wave generated by 

Simulink for major time steps of (a) 200 ms, (b) 100 ms, and (c) 75ms. 

Once the PLC receives the sine wave input, the ladder logic implemented in OpenPLC 

determines if the current Sine wave values is above or below the setpoint of 1.2. If the Sine wave 

value is above 1.2, the command output is a value of one, and if it is below 1.2, the output is 

zero. Therefore the command signal creates a square wave signal over time. The controller 

Real PLC 200 ms timestep

Emulated PLC 200 ms timestep

Simulink Signal

a

b

c

Real PLC 100 ms timestep

Emulated PLC 100 ms timestep

Simulink Signal

Real PLC 75 ms timestep

Emulated PLC 75 ms timestep

Simulink Signal
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response signal transmitted by the connected PLC is recorded within the running Simulink 

simulation and compared to the ideal baseline signal to identify the response time lag. This time 

lag in the response of the PLC is unavoidable in this asynchronous process. For example, if the 

simulation jumps from ten percent below the set point to ten percent above the set point, from a   

step to the next, the PLC would not actuate until the set point is exceeded. The actuation 

response for the emulated and real PLCs are shown in Fig. 2.10a-c and Table 2.6 for the different 

simulation major time steps. For ease of viewing, only 40 s of the controller response is plotted 

in Fig. 2.10 out of the 300 s total simulation run time. The controller response for both the 

emulated and real PLCs consistently lags behind the ideal response signal, with the square wave 

signal for the PLCs visibly shifted to the right (Figs. 2.10a-c). 

The actuation response statistics are summarized in Table 2.6 for the major simulation 

timesteps of 200, 100, and 75 ms. Table 2.6 shows the recorded time lags observed for each 

square wave signal and the percentage of actuation signals which featured that degree of time lag 

relative to the ideal response signal. The recorded lag in the actuation response for the different 

timesteps is discrete, and ranges in size from 2-4 major timesteps (Table 2.6). The actuation 

response using 200 ms major time step size is nearly the same, with the emulated PLC actuation 

response lagging very slightly behind that of the real PLC.  

Decreasing the major time step size to 100 ms increases the divergence between the emulated 

and real systems, with the emulated PLC responding slightly faster on average compared to the 

real PLC (Table 2.6). This trend continues as the timestep further reduced to 75 ms, where the 

difference between the real and the emulated PLC is further increased. The network response 

analysis for the real PLC suggested that the slowest roundtrip communication is around 50 ms, 

not accounting for computational time. It is expected that as the real PLC approaches the 

physical limit it can receive information, the actuation response time will diverge from the ideal 

response rate. A similar physical communication limit also exists for the emulated PLC, but it 

appears to be lower than that of the Real PLC due to its higher data transfer rate.  

As noted in Section 2.3.1, the inter-process communication programs in these analyses are 

asynchronous with the Simulink simulation. This is for better validation comparison between the 

real and emulated PLCs. The delay in the actuation response signal generated by the OpenPLC 

programming can be characteristic to the PLCs computing hardware and software. A 

synchronous inter-process communication method could be employed to eliminate the time lag 
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between the observed and ideal actuation response signals by ensuring that the Simulink 

simulation will wait for the PLC control signal before continuing to the next timestep. The 

minimum size of the simulation timestep to be used, however, will still be limited by the network 

response time for the communication between the PLC and server PC running the process 

simulation model. 

Table 2.6: Actuation response for the real and emulated PLC with differing simulation timesteps 

Major Time Step == 200 ms, Simulation Time == 300 s 

Lag Real PLC Actuation Response Time Emulated PLC Actuation Response Time 

400 ms 98.67% 96.67% 

600 ms 1.33% 2.67% 

800 ms 0.00% 0.67% 

Sample Size 35,177 TCP Packets 133,855 TCP Packets 

Major Time Step == 100 ms, Simulation Time == 300 s 

Lag Real PLC Actuation Response Time Emulated PLC Actuation Response Time 

200 ms 93.33% 96% 

300 ms 5.33% 3.33% 

400 ms 0.67% 0.67% 

600 ms 0.67% 0.00% 

Sample Size 35,177 TCP Packets 133,855 TCP Packets 

Major Time Step == 75 ms, Simulation Time == 300 s 

Lag Real PLC Actuation Response Time Emulated PLC Actuation Response Time 

150 ms 80.67% 95.33% 

225 ms 19.33% 4.00% 

300 ms 0.00% 0.67% 

Sample Size 35,177 TCP Packets 130,288 TCP Packets 
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Figure 2.10: Actuation response of the real and emulated PLC compared to the ideal response 

generated by Simulink for major time steps of a) 200 ms, b) 100 ms, and c) 75 ms. 

c
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a Real PLC 200 ms timestep

Emulated PLC 200 ms timestep

Simulink Signal

Real PLC 100 ms timestep
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Figure 2.11: Recorded actual sampling rates of emulated PLC compared to ideal sampling rate  

 

Figure 2.12: Recorded actual sampling rates of the real PLC compared to the ideal sampling rate  

2.3.5 Sampling Rate 

The rate at which a PLC samples the controlled process is a very important parameter based 

on classical control theory, and in terms of determining if the PLC is fast enough to monitor the 

a b

a b
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physical process in questions. The sampling rate of the real and emulated PLC is measured using 

an algorithm implemented in python that writes a value to a register, get the wall clock time at 

the end of the ladder logic script execution, write a new value to the same register, and time how 

long it takes the PLC to submit a new control action based on the new input. This method 

assumes that the python script is running at a much faster rate than the ladder logic program and 

that the computational time required to get the current time is negligible relative to the sampling 

rate. These are valid assumptions for the current testing setup. The real and emulated PLCs are 

tested with sampling rates specified for the OpenPLC program of 1, 25, 50, 100, 250, and 500 

ms, and the actual sampling rate recorded using the python algorithm to check for any deviations 

from the ideal specified rate.  

Figures 2.11 and 2.12 present the results of the sampling rate analyses for the emulated and 

real PLCs, respectively. The sampling rate results for 1 – 100 ms are shown in Figs. 2.11a and 

2.12a, with the results for sampling rates of 250 and 500 ms are shown in Figs. 2.11b and 2.12b. 

The actual and ideal sampling rates are seen to be equivalent for both the emulated and real 

PLCs when the OpenPLC sampling rate was set to a value ≥ 50 ms. Below 50 ms the emulated 

PLC only slightly diverged from the ideal rate, while the real PLC is no longer capable of 

matching the ideal sampling rate. Comparing the variance in the actual measured sampling rate, 

it can be seen that for sampling times above 50 ms the real PLC experienced less variance than 

the emulated PLC. The difference in the variance between the emulated and real PLCs decreased 

as the sampling rate increased, with the smallest variance observed at a sampling rate of 250ms. 

These results for the sampling rate analyses suggest that the emulated PLC matches the same 

average sampling rate as the real PLC. This is true as long as the sampling rate specified for the 

OpenPLC programing is set to ≥ 50 ms. The recorded sampling time includes the network 

communication between the server PC and the PLC, thus the faster sampling rates run into the 

network communication time observed between the PLC and server PC running the Simulink 

simulation model. The emulated PLC is capable of supporting faster communication rates than 

the real PLC hardware (Table 2.4). For sampling rates < 50 ms the emulated PLC did not 

divergence as seen in the data for the real PLC (Figs. 2.11-2.12). 

2.4. Summary  

This work developed a PLC emulation methodology and applies it to validating an emulation 

of a Raspberry 3B+ as the benchmarking hardware for a PLC running the open-source OpenPLC 
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program. The chosen PLC emulation uses the VMware software to emulate the kernel and 

software of the physical device and employs the same OpenPLC control program software and 

network communication protocols as the real PLC. The validation testing analyses investigates 

the emulated and real PLCs linked to a transient process simulation model running within Matlab 

Simulink. Python scripts running on the server PLC with the Simulink simulation and PLC are 

used to handle the inter-process communication between Simulink and the OpenPLC control 

program running on both the emulated and real PLCs. 

The validation testing analyses have shown that the real and emulated PLCs, if properly 

configured, can have digital and physical signatures that approximate each other. Using the same 

software on both systems should mean that any vulnerabilities in the OS kernel, programs, and 

communication protocols used on the real system would be reflected in the emulated system and 

that the internal logic programming is highly consistent between the two.  

The testing effort characterized the digital signatures of the network response and types and 

proportions of network traffic recorded between the PLC and server PC running the Simulink 

process simulation. The analyses of the network response showed that the emulated PLC has a 

much higher bandwidth capacity relative to the real PLC, however this was found to not have a 

significant impact on the relative communication speeds relative to the real PLC. Setting the 

major simulation time step greater than the slowest packet round-trip time of ~50 ms resulted in 

there being a negligible difference in the network response time between real or emulated PLCs.  

The difference in bandwidth did have an effect on the recorded network traffic, with the 

emulated PLC transmitting approximately three times as many total data packets as the real PLC. 

Although the total number of packets was found to be different, the PCAP analyses showed that 

the emulated PLC generated the same variety of network traffic packets as observed using the 

real PLC. When looking at the relative proportions of the data packets in the different categories 

collected by the Wireshark utility, the real and emulated PLC did not have a difference of greater 

than 1% in any data packet type. 

The physical signatures of the actuation response time and sampling rate are also 

characterized for the real PLC and compared against the developed PLC emulation. The 

validation testing analyses showed that the actuation response times for the emulated and real 

PLCs converge as the simulation major time step increases. For a simulation major time step of 

200 ms the difference between actuation signal response times of the real and emulated PLC was 
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found to be within 2%. This suggests that future I&C experiments with time history dependent 

processes should use a Simulink simulation time step ≥ 200 ms to make sure that the PLC 

emulation response exactly matches the physical Raspberry Pi 3 B+.  

Finally, validation analyses investigating the sampling rate the OpenPLC programming found 

that a sampling rate ≥ 50 ms resulted in both the real and emulated PLCs matching the specified 

sampling time set in OpenPLC. For sampling rate < 50 ms the real PLC observed significant 

deviation in the actual recorded sampling rate from the ideal value. The smallest difference in the 

sampling rates of the emulated and real PLC systems occurred for a sampling rate of 250 ms. 

The validation testing analyses demonstrate PLC emulation with actuation responses and 

sampling rates which are essentially indistinguishable from the real PLC to the process 

simulation being controlled. From a cybersecurity perspective, this PLC emulation runs the same 

software, communicates using the same communication protocols, and generates the same types 

and proportions of network traffic data types as the real device. Employment of the developed 

PLC emulation methodology shows the importance of selecting the proper configuration 

parameters to ensure that the emulated PLC behaves comparable to the real system, confirming 

the need for detailed characterization and comparison of the physical and digital signatures as is 

performed in this work. 

  



34 

 

3. Methods of Interfacing Physics Based Nuclear Power System Model with 

PLCs 

A timely and accurate data and control transfer interface is developed to allow for inter-

process communication between a simulation model running in Matlab Simulink and an external 

programmable logic controller (PLC). This interface is demonstrated by connecting a dynamic 

simulation model of a space reactor power system with multiple closed Brayton cycle energy 

conversion loops (DynMo-CBC) and a Raspberry Pi PLC. This work investigates four data 

transfer protocols (text file transfer, serial communication, shared memory, and TCP/IP 

communication) to determine the most effective option for communication between Matlab 

Simulink and external PLCs.  

3.1 Background 

Digital instrumentation and control (I&C) systems can offer higher efficiency and 

performance in process control applications compared to analog systems, but at the cost of 

possible cyber security risks. The increasing integration of digital I&C systems in nuclear power 

plants creates potential cyber security risks which could present a serious threat to national 

security. The nuclear instrumentation and control simulation (NICSim) project aims to develop a 

platform to investigate the cyber security of nuclear I&C architecture which links emulated and 

simulated components representing the I&C system of a nuclear power plant with a physics-

based simulation model of the plant for direct control feedback. Developing this platform 

requires an interface to handle the inter-process communication between the plant simulation 

model and the emulated PLC in the I&C system. 

Terrestrial power reactors systems are not the only systems at risk, space nuclear power 

systems are also vulnerable. Future space nuclear power systems are expected to utilize digital 

I&C systems which will communicate back to earth via radio transmission. Cyber-attacks are not 

the only vulnerability to space reactor power systems; micro meteoroids, radiation, and 

component failures can impact operation and require a timely response by the onboard controller. 

Having an onboard simulation of the reactor power system to compare operating parameters with 

those of the real system, in real time, would allow identifying any change in operational 

condition and determine a correction and adjustment of system operation. This requires an 

effective interface of the simulations with the digital I&C systems, in a timely and accurate 

manner, to compare the simulated operational parameters to those of the real system.  
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The commercial nuclear plant simulation model in the NICSim platform is constructed 

within the modular and versatile Matlab Simulink platform (MathWorks 2018). Matlab Simulink 

is a powerful simulation tool commonly used in industry to simulate complex physics-based 

systems. It is selected for its flexibility for meeting adverse physics-based simulation needs. 

Simulink does not have a native solution for timely and accurate data transmission interfaces 

with external control systems, such as PLCs, that can be compiled inline by the Simulink C coder 

into an executable. An executable is desirable for running simulations outside of the Matlab 

platform. This is important when needing to run simulations on server high performance 

computer networks without a Matlab license.  

 

Figure 3.1: Flow diagram of the functionality of the developed external interface. 

Many third-party solutions have been created to connect Simulink to external controllers; 

however, these have only been developed for specific proprietary controller software. Siemens 

has developed application programming interfaces (APIs) to connect their SIMIT product to 

Simulink (Siemens 2018). However, this product cannot provide a light weight adaptable 

interface. Similarly DIgSILENT has a Simulink interface that is designed only for their 

PowerFactory product, but again it lacks flexibility (Kerahroudi et. al. 2014). Therefore, there is 

a need to develop a general, lightweight external interface to transport data out and transfer 

control signals into Simulink from physical or emulated PLCs. This interface can compile in-line 
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with the Simulink simulation model into a stand-alone executable.  

Figure 3.1 depicts the functionality of the external interface developed herein to facilitate 

timely and accurate transfer of data and control signals. Any delay or inaccuracy in data and 

control transmission can negatively impact the simulation and controller response. Therefore, the 

interface must support fast and reliable inter-process communication, bridge the communication 

gaps between Simulink, PLCs, and computer networks, and capable of connecting with multiple 

PLCs across I&C system network architecture. Flexibility of the interface is required to 

accommodate potential simulated systems and communication protocols. 

3.1.1 Objectives 

The objective of the effort described in this section is to develop a fast and reliable data and 

control interface, and investigate multiple communication methods, These methods are 

benchmarked to ascertain which best facilitates the most timely and accurate communication. 

Once selected, the functionality of the best interface method will be demonstrated by connecting 

an existing dynamic simulation model of a space reactor power system to an external 

programmable logic controller (PLC). This is the open-source PLC used in section 2 with 

OpenPLC running on a Raspberry Pi 3B+ minicomputer (Alves 2019). The dynamic simulation 

model of the space reactor power system, with multiple closed Brayton cycle loops (DynMo-

CBC), has been developed by the University of New Mexico’s Institute for Space and Nuclear 

Power Studies (UNM-ISNPS) using the Matlab Simulink platform (El-Genk, Tournier, and Gallo 

2010). This section describes the control of this power system using the Raspberry Pi PLC. The 

results will demonstrate the capabilities of the developed data and control interface to support 

linking a PLC with a dynamic model of a commercial nuclear power system model to be 

developed in the NICSim project. 

3.2. Approach 

Matlab Simulink is a powerful tool for physics-based modeling. However, it offers only 

limited native methods of external communication and control. It includes a powerful tool to 

implement C code within a model, referred to as S-Functions. These functional blocks allow C 

code written in a Matlab specific structure, to run and compile in-line with Simulink models (The 

MathWorks 2019). These S-Functions are structured to allow the C code to interact with the 

Simulink model during specific operational steps performed by the Simulink solver in the 

simulations, such as the initialization, output, update, and the termination phases.  
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Initialization occurs before the simulation model begins, while the termination phase happens 

at the end of the simulation. The code in the output phase operates during every minor simulation 

time step, where Simulink is solving for the parameters of the physics-based models, iteratively 

till solution convergence. The code in the update phase operates near the beginning of every 

major time step. The developed data transfer interface for all operations will run in the update 

phase, to prevent potential interferences with the Simulink iterative solution and reduce 

computational time. During this phase, the communication with the Simulink model only 

happens each major time step.  

 

Figure 3.2: Flow diagram of Matlab Simulink S-Function data and control transfer operations. 

The flow diagram of the S-function (Figure 3.2) describes the operations in the update phase 

of the final S-Function design. First, the S-Function collects the input system parameters to the 

function block from within the Simulink simulation. The function then writes this data to the 

‘Publish’ data output communication lane. Programming semaphores (Semanchuk 2018b) are 

used to control the access to the stored shared memory. The S-Function releases the ‘Publish’ 

semaphore after writing the ‘Publish’ data, which indicates to the external interface program to 

begin operations. The S-function then waits for the ‘Update’ semaphore to indicate completion of 

the external program’s operations before reading the ‘Update’ data lane. In either case, after the 

‘Update’ data is read and confirmed to be current and complete, the data is sent to the output 

section of the functional block in the Simulink model (Fig. 3.2). 

An external interface program written in Python is developed, to facilitate external data 

operations (Fig 3.3). Python is a versatile programming platform that utilizes all common 
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communication protocols. The python interface continuously reads the data published by the S-

Function until it detects an updated time value. It then writes that data to the ‘Update’ data lane 

(Fig 3.3). The developed python interface waits for the ‘Publish’ semaphore to indicate that the 

S-Function has written new data values, before reading the ‘Publish’ data lane, and makes sure 

the data is current. It writes this data to the ‘Update’ data lane before releasing the ‘Update’ 

semaphore to indicate to the S-Function that its operation is completed. 

 

Figure 3.3: Flow diagram of Python external interface data and control transfer operations. 

3.2.1 Data Transfer Methods Investigated 

This subsection investigates four data transfer methods, namely (a) the text file transfer 

method, (b) the serial data communication method, (c) the shared memory communication 

method, and (d) the method of Transmission Control Protocol over Internet Protocol (TCP/IP). 

The most simplistic method of the text file transfer, utilizes two shared text files that data is 

written to and read from. The S-Function and the external interface have write permission for 

only one of the two text files. This ensures no interference between the read and write operations 

for the ‘Update’ and ‘Publish’ text files. 

The serial communication method is a standard communication protocol that transmits 8-bit 

binary data packets between two serial ports (Liechti 2015). To facilitate communication, a third 

program is needed to generate two virtual serial ports that are interconnected to the S-Function 

and the external interface. The data is packed into 8-bit binary packets to transmit via the serial 
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ports. Once received, the data is unpacked back into its original format. One of the major 

benefits of the serial communication method is inherent synchronicity. Two-way communication 

cannot happen simultaneously. To receive data, a program ‘listening’ to the serial communication 

line waits to receive the entirety of the message before continuing. This ensures synchronization, 

since after transmitting data the S-Function switches to listening on the serial port. It will hold 

the process until receiving a response from the external interface. Likewise, after transmitting out 

the data to the S-Function, the external interface switches to listening and waits until the S-

Function responds at the next time step.   

The shared memory method is a protocol incorporated into every modern operating system 

for the purpose of inter-process communication (Semanchuk 2018a). Shared memory allocates a 

portion of the system memory for data storage, which can be accessed and manipulated by 

multiple processes. Functionally, this is very similar to the text data transfer method, with some 

exceptions. Shared memory does not need computationally slow file operations, such as opening 

and closing files every time they are read or written. Not needing to open and close files makes 

the shared memory method a far faster and light weight method of data transfer. 

The TCP/IP method is a protocol commonly used in computer networking. The data is first 

converted into binary packets which are then transmitted to the IP address of the intended 

recipient where they are unpacked into readable data (McMillan 2019). The TCP/IP method is 

quickly ruled out, because it has unmanageable issues with data packet loss and poor response 

time with the Simulink simulation, leading to significant control timing mismatch and 

instabilities in the simulation solution. The other three methods are developed further into 

functional transfer interfaces and benchmarked against each other to determine which is best for 

timely, reliable, and synchronous communication and control.  

3.2.1.1. Transfer Method Benchmarking Setup 

A line diagram of the benchmarking setup used to test the different interface methods is 

depicted in Figure 3.4. Two Sine waves are generated and multiplexed into a single vector, which 

is sent to the input of the S-Function. The S-Function then sends this data out to the python 

interface. The external python interface receives the data and sends it back to the S-Function. 

After receiving the data from the external python interface, the S-Function outputs this data to 

the simulation where analyzed to determine the difference between the signal sent and that 

received. In a subsequent benchmarking setup, the Python interface is linked with an external 
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programmable logic controller (PLC) (Fig. 3.4). The PLC receives the simulation data from the 

python interface and returns control decisions. Details of this implementation using the 

Raspberry Pi 3B+ PLC are given in Section 2.2.1 of this progress report. 

 

Figure 3.4: Benchmarking setup for data transfer using different interface methods. 

3.2.1.2 Results and Discussion 

Each of the communication method is tested for 2000 seconds of simulation time using the 

benchmarking setup in Fig 3.4, and the collected data is compared. The testing results revealed 

significant issues initially with each of the three transfer methods examined. The benchmark 

testing of the text file transfer and shared memory methods revealed a mis-synchronization 

problem resulting in a time shift and significant errors when processes try to read and write the 

same data simultaneously (Figure 3.5). This situation is referred to as a race condition. The serial 

communication method does not have a synchronization issue, and the data maintained high 

fidelity with this method. However, as shown in Figure 3.6, the serial communication method is 

orders of magnitude slower than text file transfer and the shared memory methods. This increases 

the simulation time required for each time step to the point where the real run time exceeds the 

simulated time. This makes simulating the response of PLCs to real time data practically 

impossible. The serial data transfer method is thus excluded from further consideration, and 
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focus is shifted to alleviating the synchronization issues with the text data transfer and shared 

memory methods. 

 

Figure 3.5: Text file and shared memory methods between S-Function input and output. 

 

Figure 3.6: Comparison of the total run time of the different data transfer methods examined. 
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3.2.2 Improved Synchronicity 

Semaphores, a part of the inter-process communication protocol (Semanchuk 2018b), are a 

non-negative integer stored in the shared memory. When a process “releases” semaphore, it is 

incremented by one (1). When a process is “acquiring” or waiting on a semaphore, it holds 

operations until it reads that the semaphore is greater than 0. Once a process successfully 

“acquires” the semaphore, it decrements the integer by 1. Synchronization is enforced using the 

semaphore protocol by ensuring that each side of the interface waits to access the data while the 

other side has the semaphore. 

 

Figure 3.7: Diagram of improved transfer interface setup with semaphores. 

Figure 3.7 depicts the setup of the improved transfer interface methods with implemented 

semaphores to ensure synchronicity. For this application, two named semaphores are used: the 

“Update” semaphore and the “Publish” semaphore. When the S-Function writes data to the 

“Publish” file or shared memory space, it releases the “Publish” semaphore. This indicates to the 

python interface that the S-Function is finished writing the next data set. The python interface 

then reads the “Publish” file or memory space and performs any operations needed before 

writing the “Update” file or memory space. Once the python interface writes to the “Update” file 

or memory space, it releases the “Update” semaphore to indicate to the S-Function that it is done 

writing the data. The S-Function detects that the semaphore is released and reads the “Update” 
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file or memory space, which is then output to the model. This process repeats every time step, 

ensuring that both programs run in perfect lock-step operation. Such synchronization eliminates 

any time shift and read/write overlap. 

3.2.2.1 Results and Discussion of Improved Setup 

The recorded difference between the input and output of the S-Function using the interface 

with semaphores is plotted in Fig 3.8. The significant error reduction due to the implementation 

of semaphores for synchronization, when compared to the results without semaphores, is clear 

(Fig 3.5). The little error is due to some round off in the 7
th

 decimal place, compared to a 

difference of 0.13% without the semaphores. 

 

Figure 3.8: Difference of S-Function Input & Output with Improved Setup 
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and Gallo 2010), and is discussed next. 

 

Figure 3.9: Total run time comparison with improved setup using semaphores. 

 

Figure 3.10: A layout of the DynMo-CBC integrated space reactor power system model (El-

Genk, Tournier, and Gallo 2010). 

3.3. DynMo-CBC Model 

DynMo-CBC, a dynamic simulation model for a space nuclear power system with three 

closed Brayton-Cycle (CBC) energy conversion loops, was developed by the University of New 
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Mexico’s Institute for Space and Nuclear Power Studies (UNM-ISNPS) (El-Genk, Tournier, and 

Gallo 2010). The modeled integrated power system comprises a Submersion Subcritical Safe 

Space (S^4) gas cooled reactor (King and El-Genk 2009) and 3 CBC energy conversion loops, 

each coupled to a separate sector of the nuclear reactor. The three sectors of the core of the S^4 

reactor are neutronically and thermally coupled, but hydraulically independent, and each 

serviced by one of the three CBC loops. This space power system is designed for space 

exploration missions or planetary surface power is designed for the avoidance of single point 

failures (El-Genk, Tournier, and Gallo 2010).  

 

Figure 3.11: Radial cross section of the DynMo-CBC S^4 reactor core (El-Genk, Tournier, and 

Gallo 2010; King and El-Genk 2009). 

Figure 3.10 depicts one of the three CBC loops in the S^4 CBC power system. Each CBC 

loop has a single shaft turbomachine, with a centrifugal turbine and compressor and a permanent 

magnet alternator (PMA). The waste heat is rejected into space by water heat pipes radiator 

panels that are thermally coupled to the CBC He-Xe gas loop by a secondary NaK-78 liquid 

metal loop. Fig 3.11 presents a section view of the S^4 reactor (King and El-Genk 2009). It is 

controlled using six rotating B4C/BeO segmented control drums within the BeO radial reflector. 
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The S^4 CBC power system normally operates at a reactor thermal power of 471 kWth and 

delivers 130.8 kWe of load power for up to 12.4 years of full power operation. The fully 

integrated transient DynMo-CBC space reactor power system model is implemented within the 

Simulink platform (Fig. 3.10). 

The PLC and transfer interface are linked to the DynMo-CBC model to only control the 

rotation of the control drums of the S^4 reactor (Fig 3.11). Once successfully implemented, more 

complex control systems could be easily introduced in the PLC programming. The python 

interface bridges the communication gap between the external PLC and the Simulink DynMo-

CBC model. The response of the DynMo-CBC model linked to the external PLC is benchmarked 

against the results of the DynMo-CBC model, using internal control logic built within the 

Simulink model. 

3.3.1 DynMo-CBC External Controller Integration 

Figure 3.12 is a diagram of the improved interface integrated into the DynMo-CBC model 

for controlling the rotation of the control drums (Fig. 3.11) with a Raspberry Pi PLC. The 

Simulink based DynMo-CBC model outputs state variables to the S-Function, which writes the 

data to the ‘Publish’ shared memory space and releases the ‘Publish’ semaphore. The python 

interface detects the release of the ‘Publish’ semaphore and reads the ‘Publish shared memory 

space. The interface then converts the read data to a Modbus compatible format and sends it via 

Modbus to the Raspberry Pi PLC. The PLC reads the received data from the python interface and 

determines the required angular rotation rate of the control drums (Fig. 3.11). The PLC 

communicates the drums’ actuation speed via Modbus to the python interface, which writes it to 

the ‘Update’ shared memory space. The ‘Update’ semaphore is then released by the Python 

interface. The S-Function detects the release of the ‘Update’ semaphore and continues to read the 

data in the ‘Update’ shared memory space. The drums’ rotation rate data is then output from S-

Function into the simulation, and acted on the drum control commands. The drum controller for 

both the internal control and the external PLC operate as follows:  

a) The controller checks the simulation time, 

b) If the time is greater than 60 seconds, drum rotation begins, 

c) The rotation angle of the drums is measured, and if below 52° rotation continues, 

d) If above conditions are true, the rotation rate of the control drumms is set to 0.0025°/sec. 
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Figure 3.12: Diagram of improved data and control transfer interface to DynMo-CBC 

The rotation of the control drums outward increases the external reactivity for starting up the 

S^4 reactor (El-Genk, Tournier, and Gallo 2010). Figs. 3.13-3.15 show the results of a simulation 

of the startup of the S^4-CBC power system. At a time, t = 60 s, the PLC commands the control 

drums to rotate outward, inserting external reactivity into the reactor core (Fig. 3.13). This 

increases the reactor thermal power, causing the reactor core and coolant temperatures to 

increase (Fig. 3.14). The rise in the core temperatures results in a negative temperature reactivity 

feedback that temporarily decreases the total reactivity and subsequently the reactor thermal 

power, causing the first spike seen in Fig. 3.14. As the external reactivity insertion continues, by 

further rotating the control drums continues, the temperature feedback due to the increase in 

reactor power, equals the external reactivity insertion, resulting in a steady increase in the reactor 

power and core temperatures until the end of the reactivity insertion during the reactor startup. 

This is when the control drums reach a position of 52° rotated outward (Fig. 3.14). Initially 

during the reactor startup transient, a battery is used to supply power to a motor rotating the 

single shaft turbomachinery units until reaching a rotation rate of 45,000 rpm at which net shaft-

power becomes zero and the battery disconnected (Fig. 3.15). As the reactor thermal power 

increases during startup, the power generated by the turbine exceeds that consumed by the 

compressor, and the power generation becomes net positive. After the system reaches steady 

state, each CBC unit supplies 43.6 kWe.  
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Figure 3.13: Core reactivity and control drum position during reactor startup. 

 

Figure 3.14: Reactor thermal power and reactor inlet and outlet temperatures during reactor 

startup. 
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Figure 3.15: System electric power generation and control drum position during startup. 

In Figs. 3.13-3.15 the solid lines for the system state variables generated by the DynMo-CBC 

model connected to the external Raspberry Pi PLC through the developed interface. The square 

symbols in these figures are the values produced by the DynMo-CBC simulation using internal 

control logic of the control drums’ rotation (Figs. 3.13-3.15). The results show no difference 

between the state variable values calculated during the startup transient by the DynMo-CBC 

model controlled by the PLC and those calculated with an internal Simulink control model. Figs. 

3.13-3.15 show that the complex feedback behavior captured by DynMo-CBC is not impacted by 

the external PLC as a part of the power system startup transient. This test successfully 

demonstrates the capability of the interface program to enable an external PLC to control a 

dynamic simulation model of a space nuclear power system running in Matlab Simulink. 

3.4. Summary 

The work presented in Section 3.0 investigated four transfer methods for communication 

between Matlab Simulink and an external PLC. These are (a) the text file transfer method, (b) the 

serial communication method, (c) the shared memory method, and (d) the TCP/IP method. The 
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slow to be effective. The text file transfer and shared memory methods initially tested as fast 

enough, but have issues with synchronization. However, this is remedied with semaphores for 

enforcing synchronicity. After synchronous implementations, the shared memory method is 

much faster than text file transfer method, and is selected as the best transfer method for the 

interface with Simulink. 

The shared memory data and control interface is successfully implemented in the DynMo-

CBC Simulink model of a fully integrated space nuclear reactor power system for controlling the 

rotation of the control drums rotation using a Raspberry Pi PLC. The data of the DynMo-CBC 

model state variables with the drums being controlled by the Raspberry Pi PLC and that of the 

power system model with drums controlled by logic implemented internally within Simulink are 

compared. The results with the Raspberry Pi PLC control are identical to those of the internal 

Simulink controller, thus demonstrating viability of the data and control interface for use in 

complex dynamic systems. 
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4. Summary and Conclusions 

This report detailed the work performed by UNM-ISNPS in conjunction with SNL on the 

implementation and validation of PLC emulation and data transfer. This effort is part of the 

Nuclear Instrumentation & Control Simulation (NICSim) project funded by a DOE NEUP award 

in 2018. The work presented in this report successfully develops and validates an emulation 

methodology for modeling the PLCs for use in the safety I&C system of a nuclear reactor power 

plant. The implemented methodology links a PLC to a transient model of a fully integrated 

nuclear reactor power plant using a fast-running and robust interface. 

The PLC emulation methodology identifies the characteristic digital and physical signatures 

of the physical PLC. The PLC emulation is validated by ensuring that the behavior of the 

emulated PLC sufficiently matches that of the real hardware. The validation effort characterizes 

the digital signatures of the network response and that of recorded network traffic between the 

PLC and server PC running the Simulink process simulation. Although the emulated PLC has a 

higher network bandwidth capacity than the real PLC, this does not significant impact the 

communication speeds. Setting the major simulation time step > ~50 ms results in no significant 

difference in the network response time of the real and emulated PLCs. The PCAP analyses 

shows that the emulated PLC generates similar variety and relative proportions of network traffic 

packets as the real PLC. 

The signature of the validation physical characterizes the actuation response time and the 

sampling rate for the real PLC and compares them to those of the emulated PLC. Results show 

that when running the Simulink simulation with a major time step ≥ 200 ms, the actuation signal 

response times of the real and emulated PLC agree to within < 2%. Testing the sampling rate of 

the OpenPLC programming shows that, with a sampling rate ≥ 50 ms, both the real and emulated 

PLCs agree with the specified sampling time set in OpenPLC. The results show the emulated 

PLC has actuation responses and sampling rates essentially indistinguishable from those of the 

real PLC. From a cybersecurity perspective, this PLC emulation runs the same software, 

communicates using the same communication protocols, and generates the same types and 

proportions of network traffic data types as the real device.  

This research also successfully develops an interface linking an emulated or real PLC to a 

dynamic simulation model of a space nuclear reactor power system within Matlab Simulink. This 

interface transmits the simulation state variables of the plant condition from the Simulink model 
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to the PLC and transmits back the generated control signals to actuate a system within the 

simulation model. This interface is fast, reliable, and synchronous. It is compiled by the Matlab 

Simulink C coder to produce a stand-alone executable of the nuclear reactor power system 

simulation model. This effort investigated four different methods of inter-process communication 

to transmit data values between a physics-based Matlab Simulink simulation model and a python 

script. The investigated methods include: (a) the text file transfer method, (b) the serial 

communication method, (c) the shared memory method, and (d) the TCP/IP method.  

Implementing these methods within Matlab Simulink requires developing special Matlab S-

Functions written in the C programming language. Testing of the four data transfer 

communication methods show that shared memory communication method and the text file 

transfer method are the fastest and most reliable. The serial communication method is much 

slower than the text file transfer and shared memory methods. The TCP/IP method 

communication between Matlab and the python script is unreliable, causing instabilities in the 

transient Simulink model. The shared memory method, the fastest by far, is selected for the 

interface, using semaphores to ensure synchronicity with the physics-based Simulink model. 

The effectiveness of this interface is demonstrated by linking a physical Raspberry Pi based 

PLC, running ladder logic control programming using OpenPLC, to a Matlab Simulink dynamic 

model of an integrated space nuclear reactor power system. The PLC controls the rotation of the 

reactor’s control drums. The connected PLC successfully commanded the simulated space 

nuclear reactor to start up to full power, nominal steady-state operating conditions. The transient 

behavior of the power system controlled by the PLC is indistinguishable to that of a setup of 

internal control logic built within Simulink.  
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5. Application to NICSim Project 

The research detailed in this progress report developed and demonstrated important elements 

to be implemented in the NiCSim platform, currently being developed by UNM-ISNPS in 

conjunction with SNL, under a 2018 DOE NEUP award. Fig. 5.1 shows a line diagram of the 

different components of the NICSim platform. The validated PLC emulation described in 

Section 2 will be integrated within the SCEPTRE framework to represent the different PLCs 

within the safety I&C system architecture of a commercial nuclear reactor power plant. 

Integrating the emulated PLC in the SCEPTRE framework at SNL is currently underway, and 

nears completion. The emulated PLC developed here will be adapted to represent the different 

PLCs within the nuclear power plant’s protection and safety monitoring I&C system, by writing 

ladder logic control programs to run within OpenPLC on the emulated systems.  

 

Figure 5.1: Line diagram of the elements within the NICSim platform for the implementation of 

the physics-based models of a nuclear reactor power plant to the SCEPTRE emulytics 

framework. 

The selected data transfer interface, developed and tested in Section 3, is successfully 
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demonstrated to effectively link a PLC to a dynamic simulation model of a space nuclear reactor 

power system. Future application of this interface, for facilitating the communication and control 

between a Simulink physics-based model of a commercial nuclear plant and the emulated PLCs 

and virtual network, will be implemented within the SCEPTRE framework (Fig. 5.2). To 

accomplish this linkage, a python wrapper of the interface will communicate with a data broker 

program within the SCEPTRE framework, called Gryffin. Gryffin handles the direct 

communication with the virtual machines, representing the PLCs, and other I&C network 

components (Fig. 5.1). The component submodels representing the primary loop of a Pressurized 

Water Reactor (PWR) and plant instrument sensor and controls submodels (Fig. 5.1) will send 

and receive values to and from the PLCs through this interface. 

 

Figure 5.2: Line diagram showing developed interface to connect the nuclear plant simulation 

model to SCEPTRE within the NICSim platform. 

The validated PLC emulation and developed interface program will enable future simulation 

of different operation and safety I&C system architectures linked to the dynamic, physics-based 

model a nuclear power plant. Future implementation and successful completion of this work 

include investigating the physical impacts of targeted cyber-attacks on plant I&C system 

architectures, aiding in training plant operators in identifying signs of a cyber-attack, and helping 

develop metrics to quantify how a cyber-attack propagates throughout nuclear power plant I&C 

system networks. 
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