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Abstract  

The research team at the University of New Mexico’s Institute for Space and Nuclear Power Studies 

(UNM-ISNPS) investigated training and evaluating the performance of an artificial Intelligence (AI) 

controller, based on an artificial neural network, for the Very-Small, Long-LIfe, Modular (VSLLIM) 

microreactor design developed at UNM-ISNPS. The walk-away safe VSLLIM microreactor for 

generating between 1.0 – 10 MWth is fully passive with redundant safety and operation features. Natural 

circulation of the in-vessel sodium coolant cools the core during nominal operation and for decay heat 

removal after shutdown with the aid of the in-vessel chimney and helical coiled tubes Na/Na heat 

exchanger. The integrated power system with a VSLLIM reactor with a Na-Air heat exchanger and open-

air Brayton cycle transported together on an 18-wheeler truck to its destination. This system for energy 

generation in arid regions can generate 10.0 and 1.0 MWth continuously 24/7 without refueling for 5.9 and 

91 years, respectively.  

1. Objectives 

The objectives for this task at UNM-ISNPS are to: (a) develop a physics-based transient model of the 

VSLLIM reactor, which couples reactor kinetics and thermal-hydraulics, using the modular MATLAB 

Simulink platform [The MathWorks, 2022], (b) use the developed reactor model to generate training data 

for a transient startup scenario of the nuclear reactor from initial subcritical condition to nominal steady 

state operation, (c) develop a neural network Machine Learning (ML) algorithm and train it using the data 

generated using the developed transient model of simulated startup transients, and (d) perform parametric 

analyses to investigate the performance the ML algorithm and test the performance of the AI controller 

for real-time control of the reactor. 

2. VSLLIM Microreactor  

The walk-away safe VSLLIM microreactor design developed at UNM-ISNPS offers many passive 

operation and safety features and is cooled by natural circulation of in-vessel liquid sodium during 

nominal operation and for decay heat removal with the aid of in-vessel helically coiled tubes Na/Na heat 



exchanger and 2 m tall chimney [El-Genk and Palomino 2019; El-Genk, Schriener, and Palomino 2021]. 

The reactor can continuously generate 10 - 1.0 MW of thermal power for ~5.9 - 92 Full Power Years 

(FPY), respectively, without refueling. The VSLLIM is to be constructed, assembled, and sealed in the 

factory, before being integrated to the balance of the power generation system and transported to the 

operating site on an 18-wheeler truck (Fig. 1).  

 

Fig. 1: VSLLIM microreactor plant mounted on an 18-wheelers truck. 

The module VSLLIM microreactor can also be installed below ground, to protect against missile 

attack or an airplane crash, and mounted on seismic isolation bearings to protect against earthquakes (Fig. 

2). The reactor can provide both electricity and process heat for space heating and industrial uses and is 

compatible with different energy conversion options for electricity generation, such as superheated steam 

Rankine cycle, supercritical CO2 Brayton cycle, and open-air Brayton cycle in arid regions (Fig. 1). 

 

Fig. 2: Longitudinal and radial cross section views of the VSLLIM microreactor for generating 1-10 

MWth showing sodium flow path and locations of reactor control rod groups. 
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Natural circulation of the in-vessel liquid sodium cools the nuclear reactor core during nominal 

operation and after shutdown (Figs. 2-3) [El-Genk and Palomino 2019], aided by a 2 m tall chimney, and 

in-vessel helically coiled tubes Na/Na heat exchanger (HEX) located at the top of the downcomer (Figs. 

2-4). Owing to the low vapor pressure of sodium, the VSLLIM microreactor operates slightly below 

atmospheric pressure eliminating the need for a pressure vessel. Instead, the reactor has a primary vessel 

and a guard vessel, separated with a small gap filled with argon gas that houses sodium leak detectors. 

The argon gas decreases losses of thermal power for the reactor during operation to the environment. In 

the event of a loss of heat removal due to a failure or malfunction of the in-vessel Na/Na HEX, the argon 

gas is discharged and the gap between the primary and guard vessels is flooded with liquid sodium to 

facilitate the decay heat removal by in-vessel natural circulation. The removed decay is removed from the 

outer surface of reactor guard vessel using natural circulation of ambient air [Palomino, El-Genk, 

Schriener 2019].  

 
Fig. 3: Cross section and elevation views of the VSLLIM UN fuel assembly containing the B4C reactor 

control rods and the center ESD assembly. 

In addition, decay heat generated in the reactor core will be partially stored in the large mass of the 

in- vessel liquid sodium with several hundred degrees of temperature margin from the boiling point. 
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Furthermore, the alkali liquid metal heat pipes embedded in the primary vessel wall passively and 

redundantly transport a fraction of the reactor thermal energy during nominal operation and the decay 

heat after shutdown to a multitude of thermoelectric modules for generating auxiliary power. These 

modules, cooled by natural circulation of ambient air, can generate 10s of kW of auxiliary DC electric 

power, 24/7, for operating vital instruments and functions of the plant, independent of the onsite and off-

site electrical power sources, and in the event of a toral station blackout [El-Genk and Palomino 2019; El-

Genk, Schriener, and Palomino 2021]. 

The soft, fast neutron energy spectrum VSLLIM reactor core is loaded with 13.76 wt.% enriched UN 

fuel rods with HT-9 steel cladding arranged in a with P/D = 1.2 in hexagonal bundles with scalloped BeO 

walls (Fig. 3a). The walls help achieve a laterally uniform flow across the bundles [El-Genk and 

Palomino 2019]. The 54 full hexagonal bundles and the 6 partial bundles of UN fuel rods in the reactor 

core are arranged in 4 concentric rings. Each full bundle is loaded with 19 UN fuel rods and the partial 

bundles each are loaded with 12 rods (Fig. 3b). The reactor core fuel bundles are radially surrounded by 

BeO wedges within the HT-9 steel core barrel which serves as a radial neutron reflector (Fig. 3b).  

The VSLLIM microreactor has two independent means for reactor control. The first is the 12 B4C 

Reactor Control (RC) rods located in selected fuel bundles or assemblies within the second and third rings 

of the core (Fig. 2b, 3a and c). The HT-9 clad control rods replace the centermost UN fuel rod in these 

assemblies. The 12 B4C control rods are divided into three groups identified as Groups A, B, and C and 

each has a separate drive motor (Fig. 2b). The control rods of naturally enriched B4C pellets within HT-9 

cladding have upper gas plenums to contain the helium generated by the neutron absorption in the Be 

during reactor operation. Group A is the three B4C rods located in the second ring of fuel assemblies in 

the reactor core. Group B is the six B4C rods in the third ring of the fuel assemblies adjacent to those of 

the Group A rods. Group C is the three B4C rods in the fuel assemblies in the third ring of reactor core.  

During reactor startup from cold clean condition, the Group B six control rods are partially withdrawn 

to bring the VSLLIM reactor core to criticality at zero power. Subsequently, the six control rods in 

Groups A and C are partially and gradually withdrawn simultaneously for the reactor core to increase the 

reactor thermal power to the desired nominal steady state value of 1.0 – 10 MWth. The maximum 

withdrawal of these control rods is limited to 2/3 the core active height to speed reactor shutdown in case 

of an emergency, assisted with the inherent negative reactivity feedback in the reactor core.   

For redundancy, the VSLLIM reactor core is provided with a central Emergency Shut Down (ESD) 

assembly of 19, HT-9 clad B4C rods, 80% enriched in 10B, with an HT-9 steel scalloped wall (Fig. 2, 3b 

and d). This assembly provides an independent means for shutting down the VSLLIM reactor in case of 

emergency. The ESD assembly is fully withdrawn from the reactor core prior to startup and is fully 

reinserted following nominal reactor shutdown. The next section details the developed dynamic model of 



the VSLLIM microreactor to generate training and testing data of the AI controller during a simulated 

startup transient of the VSLLIM reactor. 

 

Fig. 4: A Block diagram of the various coupled sub-models of the developed VSLLIM transient model 

using MATLAB Simulink. 

3. VSLLIM MATLAB Simulink Transient Model 

The VSLLIM transient model couples 6-group point reactor kinetics and reactor thermal-hydraulics 

sub-models (Fig. 4). This model is developed using the versatile MATLAB Simulink platform [The 

MathWorks, 2022] for simultaneously solving the equations of these sub-models for the physics-based 

operation parameters of the reactor as functions of time during the simulated startup transients. These 

parameters are the reactor thermal power, the UN fuel and cladding average temperatures in the core, the 

mass flow rate and the inlet and exit temperatures of the in-vessel liquid sodium in the core, the chimney, 

the upper and lower plenums, and the downcomer. The reactor model also calculates the transient 

temperatures of the in-vessel Na/Na HEX solid structure and secondary liquid sodium flow and 

temperatures (Fig. 4). The VSLLIM transient Simulink model uses the ode23s modified Rosenbrock 

solver within Simulink with a timestep size of 0.02 s. 

The solution of the reactor 6-group point-kinetics equations in VSLLIM transient Simulink model 

calculates the transient changes in the reactor fission power, PRx, in response to an active insertion of 

reactivity, Δρex, by partially withdrawing the group A and C control rods in the core and accounting for 

negative temperature reactivity feedback, Δρfb, within the core (Fig. 4). The total reactivity, ρtotal, in the 

core equals the external reactivity minus the overall temperature reactivity feedback in the VSLLIM 

reactor core. The net temperature reactivity feedback is negative due to the decreases in the densities of 

the fuel, liquid sodium, and the Doppler broadening of the neutron cross sections in the UN fuel. 

Conversely, the temperature reactivity feedback of BeO in the radial and axial reflectors and walls of the 

Tb
Na , TBeO, TCR, & Tfuel

Rx Thermal-Hydraulic 
Model

Na/Na HEX Model

∑
Rx Point 
Kinetics 
Model

Reactivity Feedback

+



UN fuel assemblies is slightly positive and increases slowly with increased temperature [El-Genk and 

Palomino 2019]. 

 

Fig. 5: Calculated reactivity worth of the VSLLIM control rod groups and the ESD assembly at mean 

isothermal temperatures of 400 and 800 K. 

The reactivity worth of each of the control rod groups in the VSLLIM reactor core are determined as 

a function of the position and temperature using the MCNP6 code [Goorley 2014]. Fig. 5 plots the 

calculated reactivity worth for the Group A, B, and C control rods and the center ESD assembly as 

functions of the axial displacement and for temperatures of 400 and 800 K. The vertical lines indicate the 

upper limit of withdrawing the B4C control rods in the core. The external reactivity insertion Δρex is 

determined as a function of the displacement of the control rods and for the ESD bundle, assuming the 

control rods and HT-9 steel cladding and core structures are in thermal equilibrium at the mean 

temperature of the liquid sodium in the reactor core. 

The point-kinetics sub-model solves the following equation for reactor fission power in terms of the 

fission yields, Yi, and the decay constants, λi, of the six delayed neutron precursors, the prompt neutron 

lifetime, and as:  

dPRx

dt
= (

ρ𝑡𝑜𝑡𝑎𝑙−β

Λ
) PRx + ∑ λiYi

6
i=1 + S0       (1) 

In this equation, S0 is a fixed neutron source used for the reactor startup, β, is the total fraction of the of the 

delayed neutron precursors, given as (β = ∑ βi
6
i=1 ), and  in the prompt neutron lifetime. The 

concentrations of the six delayed neutron precursors are obtained from the solution of the following six 

equations in terms of the reactor fission power: 

-1

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Group A Control Rods (3 Ring 2)
Group B Control Rods (6 Ring 3)
Group C Control Rods (3 Ring 3)
ESD Bundle
T = 400 K
T = 800 K

UN Fuel Pellets

Lower Beo 
Reflector

Upper Beo 
Reflector

Upper Limit for Control Rods

Axial Distance from Core Bottom (cm)

R
e

a
c
ti
v
it
y
 (

$
)



dYi

dt
=  (

βi

Λ
) PRx − λiYi, where i=1 to 6       (2) 

The seven coupled reactor point-kinetics equations (Eq. 1 and 2) are solved for the reactor fission 

power, PRx, as a function of time during the startup and shutdown transients and following changes in 

external reactivity in the reactor core or the load power. The seven ordinary differential equations Eqs. 1 

and 2 are solved using an efficient and robust approximation of the exponential matrix of 7th order-

accurate Padé(3,3) approximate [El-Genk and Tournier 2016]. This approximate is not only accurate but 

also fast running and capable of handling large reactivity insertions with unrestrictive time step size. The 

kinetics parameters (Λ, β) in Eq. (1) and the spatial distributions of the fission power in the VSLLIM core 

are calculated by El-Genk and Palamino [2019] using the Monte-Carlo neutron transport code MCNP6 

[Goorley 2014]. 

The VSLLIM reactor thermal-hydraulics sub-model accounts for the energy balance in the UN fuel 

rods, core structure, and the in-vessel sodium and for the momentum and mass balance of the circulating 

in-vessel liquid sodium in the reactor core. A 1-D sub-model for calculating the average UN fuel 

temperature in the core divides the average fuel rod into 11 axial nodes to account for the axial 

distribution of the fission power profile in the core and the increase in the temperature of the rising Na 

coolant in the core. The fission power generated in the UN fuel rods in the reactor core, PRx, is radially 

conducted to the pellet surface, and across the sodium radial gap and the HT-9 cladding and then 

convectively removed from the outer cladding surface by the circulating sodium in the reactor core. The 

transient changes in the mean temperature UN fuel in the average rod in the core, Tf, the radial sodium 

gap, Tgap, and the HT-9 cladding, Tc, are calculated from the solution of the following coupled 1st order 

differential equations, given as: 

MfCp,f
dTf

dt
= PRx −

Tf−Tgap

Rf+Rgap
         (3) 

MgapCp,gap
dTgap

dt
=

Tf−Tgap

Rf+Rgap
−

Tgap−Tc

Rgap+Rc
        (4) 

McCp,c
dTc

dt
=

Tgap−Tc

Rgap+Rc
− Pc          (5) 

In these equations Rf, RNa, and Rc are the thermal resistance for the heat transfer in the UN fuel pellet, radial 

Na gap, and the HT-9 steel cladding, respectively. The rate of heat transfer at the outer surface of the 

cladding, PC, equals that convectively removed by the circulating liquid sodium in the core, as: 

Pc = hc Ac,o[Tc,o − Tb]         (6) 

The convective heat transfer coefficient, hc, is determined using a recently reported correlation for alkali 

liquid metals in bundles of bare heated tubes [El-Genk and Schriener 2017], expressed as: 

Nu = [10.7 (P/D) − 7.1] + 0.024 [1 −  e−10.4((P/D)−1)] Pe0.85    (7) 



This correlation is good agreement to within ±15% with more than 95% of 746 reported experimental 

data and the complied Nu values covering wide ranges of pitch-to-diameter ratio (P/D) (1.06 - 1.95) and 

Peclet number, Pe (4 – 3,074). 

The overall energy balance equation for the in-vessel liquid sodium, assuming 5% loss of the fission 

reactor power due to the neutrons and gamma photons escaping the reactor, can be expressed as: 

QRx =  PRx (0.95) =  2 ṁCp(Tb − Tin)       (8) 

In this expression, the reactor thermal power, QRx, equals 0.95 of the reactor fission power on the left-

hand side, PRx, calculated from the solution of the point- kinetic Eqs. 1 and 2. The driving pressure for 

natural circulation of the in-vessel liquid sodium driving pressure head, which the difference between the 

weights of the column of hotter, lower density sodium in the reactor core and chimney, and that of the 

colder, higher density sodium in the annular downcomer (Figs. 2a). These include the reactor core (Rx), 

the chimney (Ch), the upper and lower plenums, the Na/Na HEX and the downcomer (DC). Thus, the net 

driving pressure head for natural circulation of in-vessel liquid sodium is expressed as 

∆pd = [ρNa
dc Hdc]g − [ρNa

Rx HRx + ρNa
ch Hch]g       (9) 

The momentum balance of the circulating liquid sodium equates the driving pressure, ∆pd, to the sum 

of the pressure losses, ∆ploss , in the circulating in-vessel liquid sodium in different sections of the flow 

path. The expressions of the friction pressure losses in the VSLLIM transient model are given in Haskins 

and El-Genk [2017] and include the friction losses in the core, chimney, Na/Na HEX, the downcomer, 

and lower upper plenums (LP), as well as the pressure losses and gains due to flow area expansions and 

contractions along the flow path, ∑ ∆pexp,con. Thus, the momentum balance equation for VSLLIM can be 

expressed as:  

∆pd =  ∆ploss = ∆ploss
Rx +∆ploss

Ch + ∆ploss
DC + ∆ploss

LP + ∑ ∆pexp,con   (10) 

The pressure loss terms on the right-hand side of this equation are expressed in terms of geometrical 

parameters, and the liquid sodium’s kinematic viscosity and density at the local bulk temperatures in the 

various parts of the circulation path in the reactor. The solution of the coupled equations, 8, 9, and 10 

calculations the circulation flow rate of the in-vessel liquid sodium, ṁ, and temperatures in the different 

part of the circulation path (the reactor core, chimney, upper and lower plenums, the Na/Na HEX coiled 

tubes in the downcomer, the rest of the downcomer.  

The Na/Na HEX model (Fig. 4) solves the energy balance equation for the Na flow inside the helical 

coils of the heat exchanger. It equates the heat transfer rate by convection from the circulating in-vessel 

Na on the shell side of the HEX coiled tubes to the rate of that the heat removed by flowing sodium inside 

the HEX tubes, PHEX, subject to the user specified inlet temperature, Tin
HEX, and mass flow rate, ṁHEX, of 

the secondary sodium inside the tubes of the HEX. This model calculates the rate of heat removal from 



the in-vessel Na flowing through the HEX coils in the downcomer, PHEX, and the temperature of the in-

vessel liquid sodium exiting the HEX, Tex
HEX, into the remainder of the downcomer then entering the 

reactor core through the lower plenum. The flow rate of the secondary liquid sodium inside the tubes of 

the Na/Na HEX is actively controlled for maintaining a constant reactor core inlet temperature, Tin = 610 

K for the circulating in-vessel liquid sodium, and the user’s specified inlet temperature and flow rate of 

the secondary Na inside the HEX coiled tubes. 

3. VSLLIM Controllers 

The VSLLIM reactor is controlled by two Programmable Logic Controllers (PLCs), namely: (1) the 

Na/Na HEX Na internal Flow and (2) PLC the Reactor Control PLC. The Na/Na HEX Flow PLC 

regulates the secondary Na flow rate inside the helical coils of the HEX by changing the current input to 

an electromagnetic or mechanical pump. A Proportional-Integral (PI) control function adjusts the inlet 

temperature and the flow rate of liquid Na inside the tunes of the HEX to maintain the temperature of the 

in-vessel liquid Na entering the reactor core constant at ~610 K during a reactor startup and nominal 

operation. The input to the PI controller is the difference between the in-vessel Na inlet temperature to the 

reactor core, Tin, and the temperature setpoint of 610 K.  

The Reactor Control PLC regulates the displacements of the control rods in the reactor core and the 

ESD assembly to start up the reactor to the operator specified steady state thermal power level. It 

withdraws and inserts the ESD assembly and Group B control rods at constant rates of 4 mm/s and 2 

mm/s, respectively. The PLC’s logic changes the displacement of the Group A and C control rods to 

increase or decrease the reactor thermal power to the programed power setpoint, PSP. When the reactor 

power, PRx < 100 kWth the controller withdraws Group A and C control rode from the reactor core at a 

constant rate of 2 mm/s. When PRx ≥ 100 kWth the PLC uses a Proportional-Differential (PD) controller to 

manage the control rods displacement at a variable rate ≤ 0.5 mm/s, depending on the input to the PD of 

(PSP – PRx). The PLC restricts the withdrawal of the control rods to help avoid a rapid increase in the total 

reactivity, total, into the core during a startup transient, using the criterion derived from a control scheme 

proposed by Bernard, Lanning, and Ray [1984] as: 

ρtotal <
1

α
[

|
dρ

dt
|

λe
+ |

dρ

dt
| τ ln

PSP

PRx
]         (11)  

In this expression, α is a scaling coefficient, 
dρ

dt
 is the rate of change in reactivity, τ is the reactor 

period, and λe is the estimated effective decay constant for a delayed neutron group. The scaling 

coefficient, α, is adjusted to increase or decrease the total reactivity before the PLC halts the withdrawal 

of the control rods to provides time for the delayed negative temperature reactivity feedback in the 



VSLLIM reactor by the thermal inertia of the system, to drop the total reactivity before further displacing 

the control rods. 

 
Fig. 6: Operation parameters of the control rod displacement, reactivity, and reactor thermal power in 
simulated startup transients of the VSLLIM reactor with different values of scaling coefficient, α, in the 

Reactor Control PLC. 

 

4. VSLLIM Startup Procedure 

A ML algorithm is used to train the artificial neural network to perform the functions of the Control 

PLC during a simulated startup of the VSLLIM reactor. The startup scenario for training the AI controller 

presents a challenging control application, considering the nonlinear nature of the reactor kinetics. The 
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developed VSLLIM transient model in Simulink is used to simulate a reactor startup from initial 

subcritical condition to nominal steady state operation at a user specified reactor thermal power setpoint.  

 

Fig. 7: Operation parameters of in-vessel sodium inlet and exit temperatures and mass flow rates in 

startup transients of the VSLLIM reactor with different values of scaling coefficient, α, in the Reactor 

Control PLC. 

The reactor thermal power is increased first from critical condition at zero value to a low setpoint 

PSP,1, and subsequently from the setpoint PSP,1 to the desired steady state thermal power level PSP,2. 

Bringing the reactor to steady state operation at the low power setpoint PSP,1 provides time for the 

operators and the monitoring systems to ensure that the reactor power systems and the instrumentations 

on board are functioning properly before bringing the reactor to the desired power level PSP,2. 

The results in Figs. 6-7 are of the calculated changes in the operation parameters of the VSLLIM 

reactor in the simulated startup transients from with an initial power setpoint PSP,1 = 0.5 MWth to a final 

nominal steady state setpoint PSP,2 = 10 MWth. In the performed simulations, the scaling coefficient for the 

Reactor Control PLC, α, is set equal to 1, 10, and 25. Staring from zero flow in-vessel and HEX liquid 
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sodium and 500 K uniform temperature, The Reactor Control PLC fully withdraws the ESD assembly 

from the reactor core at a constant speed of 20 mm/s (Point 1 in Figs. 6-7). At this point, the reactor is still 

subcritical, the Control PLC begins to partially withdraw Group B control rods from the reactor core at a 

constant rate of 4 mm/s until reaching criticality (Point 2 in Figs. 6-7). Next, the PLC Controller 

withdraws simultaneously Group A and C control rods at a constant rate of 2 mm/s until the reactor 

reaches nominal steady state power, PRx = 100 kWth (Point 3 in Figs. 6-7). Subsequently, the control PLC 

switches to using the PD controller to regulate the displacement of the control rods in the core to bring the 

reactor thermal power to an initial PSP,1 = 0.5 MWth.  

The present analyses investigated the effect of the value of the scaling coefficient α from 1 to 150 on 

the smoothness of the performance curves during the simulated startup transient and the time to reach the 

reactor thermal power setpoint. Fig. 8 shows the changes in the reactor thermal power QRx during the 

simulated startup transients from an initial power setpoint PSP,1 = 0.5 MWth to a final power setpoint PSP,2 

= 10 MWth. using the α = 1, 10, and 25. With α = 1, the controller brings the reactor thermal power up 

slowly and smoothly. With increasing α the controller increases the reactor thermal power faster but in a 

more ‘scalloped’ stair step fashion. This is the thermal inertia of the system delays the increase in the 

negative temperature reactivity feedback, ρfb, which slows the decrease in the total reactivity, ρtot, to 

prompt further withdrawal of the control rods (Eq. 12) (Fig. 8). With α > 50 the reactor thermal power 

and temperatures not only increase less smooth during the simulated startup transients, but noticeably 

overshoot. 

 

Fig. 8: Effect of the scaling coefficient α of the smoothness and the rise rate of the reactor thermal power 

during simulated startup transient of VSLLIM reactor. 
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On the other hand, increasing the value of  decreases the startup time to reach the nominal steady 

state reactor thermal power , QRx, of 10 MW. Fig. 9 plots the startup time to reach nominal reactor steady 

state thermal power of 10 MW versus the value of α for the reactor PLC controller. The total startup time 

decreases rapidly from 19.0 hrs to 6.8 hrs as α increases from 1 to 25. Further increase in the value of α 

results in much smaller reductions in the startup time to 4.10 hrs with α = 100 and 4.02 hrs with α = 150. 

Therefore, a value of α = 25 is selected for the generation of the training data sets for the simulated startup 

transients of the VSLLIM reactor to different reactor thermal power setpoints ranging from 0.5 to 10 

MW. This is because higher values of α slightly decrease the startup time and increase the reactor thermal 

power and temperatures to overshot as they approach their nominal steady state values. 

 

Fig. 9: Effect of the scaling coefficient values of the Reactor Control PLC, α, on the times of simulated 

startup transients of the VSLLIM reactor to reach a nominal steady state thermal power, QRx of 10 MW.  

5. Training Data of Machine Learning Algorithm  

 

Fig. 10: Numbers of training data sets generated for different final reactor power setpoints, PSP,2. 
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Developing a neural network-based AI controller for the VSLLIM reactor requires the generation of 

numerous data sets for the simulated reactor startup sequences to train the ML algorithm. The developed 

VSLLIM Simulink model generated many data sets with different reactor thermal power setpoint PSP for 

training the ML algorithm. The training data sets are for a wide range of the low power setpoint PSP,1 = 

0.5 - 9.75 MWth, and the higher power setpoint PSP,2 = 1.0 - 10.0 MWth in 0.25 MWth increments. The 

generated data sets are also for different the reactor thermal power setpoints. A total of 797 startup 

transient data sets with more than 956 million data points. Fig. 10 shows the breakdown of the data sets 

generated for different reactor thermal power setpoint PSP,2.  

5.1 LSTM Algorithm 

A ML algorithm is developed to train the AI neural network for PLC controller of the VSLLIM 

reactor for predicting the displacement of the control rods in the reactor core during simulated startup 

transients. The AI controller makes decisions on the displacement of the control rods based on the 

supplied real-time, sequential time data provided by the Simulink model. Recurrent Neural Networks 

(RNNs) are a class of ML algorithms used with sequential time-series data inputs [Amari 1972]. Long 

Short-Term Memory (LSTM) ML algorithms [Hochreiter and Schmidhuber 1997] are a category of the 

RNNs that have been investigated for control applications of nuclear power systems [Lee, Seong, Kim 

2018; Radaideh, et al. 2020; Kim, et al. 2020; Zhang et al. 2020]. The algorithm passes the values for the 

hidden state and the cell state through the LSTM layers, with parameters determined when the cell state 

values are ‘remembered’ and ‘forgot’ to control the effect of long-term data dependencies on updating of 

the hidden state values. The ML program developed at UNM-ISNPS for the VSLLIM reactor implements 

the LSTM from the Pytorch 2.2 library [Paszke et al. 2017] into a python program for supervised learning 

and testing of the neural networks (Fig. 11).  

 
Fig.11: Structure of the AI neural networks trained with five input features, 1, 2 or 3 hidden layers of 

neurons, and a single target output layer. 
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The implemented LSTM algorithm for ML is trained using the generated data sets by the VSLLIM 

Simulink model. Fig. 11 shows the connections for a layout of the neurons in the hidden layer of the 

neural network. The five input layer values to the neural network are referred to as the Features, and 

include the reactor power setpoint, the reactor thermal power, the circulation rate of the in-vessel liquid 

sodium in the reactor, and the reactor core sodium inlet and exit temperatures. The output layer is the 

displacement of the Group A and C control rods in the VSLLIM reactor core. The connections between 

the artificial neurons are defined by the determined values of the weight, w, and bias, b, coefficients for 

the neural network while training the network using the ML algorithm. In ML this is referred to as 

Supervised Learning where the network is trained using known values for Features and Target. 

The data fed into the input layer is normalized relative to the output layer’s highest and lowest values 

of each state variable for PSP,1 = 0.5 MWth and PSP,2 = 10 MWth. This same normalization is applied to all 

training data sets generated to ensure that the normalized data are consistently scaled. The implemented 

LSTM model used the Root Mean Square Error (RMSE) as the loss function and the AdamW optimizer 

with a weight decay constant = 0.1. The learning rate (LR) varied in the performed parametric analyses, 

which investigated both constant and variable LR values and implemented a scheduler which decreases 

the LR by an order of magnitude when the validation loss ceases to decrease for sequential epochs. 

The time series data sets for the startup cases are divided into three groups, for Training, Validation, 

and Testing. During the Training, the weights and biases for the artificial neurons are updated based on 

the calculated RMSE or training loss of the predicted control rod displacement relative to the ‘true’ values 

in the VSLLIM Simulink generated datasets. During the Validation phase, the model calculates the 

RMSE or validation loss for the control rods displacement but does not update the weight and bias values. 

During each Epoch the ML algorithm cycles through all the Training and Validation data sets once. This 

process repeats for further epochs until the mean training and validation losses converge to a sufficiently 

low level. The performance of the trained neural network is analyzed in the Testing phase by determining 

the RMSE of the testing sets not included in either the training or validation data sets. This determines 

how well the neural network predicts the control rods displacement for cases it has not previously been 

exposed to. The implemented ML training approach divides the data sets into ~80% for training and 

~20% randomly selected for validation, excluding the randomly selected sets placed aside for testing. 

5.2 Parametric Analyses and Results 

The optimization of an ML algorithm highly depends on a series of parameters. The performed 

analyses investigate the effect of different options on the weighted average accuracy of the algorithm and 

the accuracy of the VSLLIM controller (Table 1). Investigated are the effects of the Learning Rate (LR) 

of the ML algorithm, the length of lookback window sequence, the size of the training and validation data 

sets, using equal numbers of trainings sets for each final power setpoint PSP,2, the order of the training sets 



loaded in to the ML algorithm, the number of neurons in the hidden layer and the number of hidden layers 

in the neural network, as well as including additional parameters as features. The effectiveness of the 

investigated options is evaluated both in terms of the weighted average accuracy of the testing results of 

the ML algorithm and the performance when they are integrated into a real-time AI controller coupled to 

the VSLLIM Simulink model. The testing phase independently calculates the accuracy of the control rod 

displacement determined by the trained AI model for each testing data set as well as the weighted average 

accuracies based either on the final power level or the initial power level during simulated startup. Table I 

summarizes the obtained results. 

Table 1: Summary of the Parametric Analyses Results of the LSTM Machine Learning Algorithm and 

the Implementation into a Real-Time Controller for the VSLLIM transient model. 

Parameter 

Investigated 
Values ML Training Results 

Real-Time Controller 

Results 

Learning Rate • Constant LR 

= 0.001, and 

0.1 

• Variable LR 
Scheduler 

 

• High initial learning rate 

results in validation loss not 

converging.  

• Implementing an LR 
scheduler decreased 

validation losses, training 

loss increased with 
increasing epochs. 

• With constant LR = 0.001 

the training loss converged 

with time and validation loss 
is sufficiently low < ~ 1x10-4 

to 1x10-3 

N/A 

Lookback 

Sequence 

Length Window 

• 1, 5, 10, 20, 

64, 250, 500 

• The sequence window of ≤ 

10 resulted in low testing 

accuracy. 

• Accuracy for sequence 
length of 64 is like that for 

20, but training time 

increased. 

• With lookback windows of 
250 and 500 points the ML 

algorithm failed during the 

data backpropagation step. 

N/A 

Number of Sets 

Used for 

Training 

• Number of 

training sets 
from varied 

10-626 and 

randomly 
selected and 

ordered 

• Using a small number of 

training sets results in low 
testing accuracy 

• Increasing the number of 

testing sets from ~50 up to 

626 slightly increases the 
spread in the accuracy 

values, with slight decrease 

in mean accuracy  

N/A 



Parameter 

Investigated 
Values ML Training Results 

Real-Time Controller 

Results 

Number of 

Training Sets 

for Different 

Power Levels 

• 1,2,3,4,5 data 
sets for each 

of the 45 

final power 
setpoints PSP,2 

• All models 

use same 

randomly 
selected set 

of 100 testing 

cases 

• Weighted average accuracy 
increased and testing data 

accuracy spread decreased 

with increasing number of 
training sets per power, from 

1 to 2. 

• Increasing number of 

trainings sets per power 
from 3 to 5 results in lower 

weighted average accuracy 

and increased spread in 

testing accuracy. 

• Highest weighted average 
accuracy is for 2-3 data 

points per setpoint final 

power 

• ML models trained with 
2 and 3 data sets per 

power level give 

comparable results. 

• Increasing number of 
data sets per power level 

up to 5 did not improve 

the rate of power 
increase during startup. 

Order of 

Training Sets by 

Final Power 

Setpoint PSP,2 

• Low-to-high 

• High-to-low 

• Randomly 
shuffled 

• Ordering the training data by 
PSP,2 from low-to-high gives 

highest weighted average 

accuracy and lowest 

accuracy spread 

• Ordering data by PSP,2 from 
high-to-low gives poor 

testing accuracy. 

• Random shuffling training 

sets resulted in accuracy 
values slightly below that of 

ordering low-to-high, but 

greater than for ordering 

high-to-low 

N/A 

Order of 

Training Sets by 

Initial Power 

Setpoint PSP,1 

• Low-to-high 

• High-to-low 

• Randomly 
shuffled. 

• Ordering training data by 
PSP,1 from low-to-high and 

high-to-low gives poor 

weighted average accuracy. 

• Random shuffling training 
cases with respect to PSP,1 

gives the highest testing 

accuracy and lowest spread. 

N/A 

Training on Sets 

for PSP,2 = 10 

MWth Only 

• Trained data 

on 35 random 
shuffled sets 

by PSP,1 

• High weighted average 

testing accuracy from > 
99.7-99.8%. 

• Testing accuracy for cases 

with PSP,2 < 10 MW is also 

high for data sets not 
included in the training or 

validation. 

• With training on only the 

10 MW data sets the 
controller gives a final 

PRx close to the 10 MW 

setpoint. 

• Testing for PSP,2 < 10 
MW the controller 

leveled at ~ 10 MW 

instead of the specified 

setpoint value 



Parameter 

Investigated 
Values ML Training Results 

Real-Time Controller 

Results 

Neural Network 

Hidden Size 
• 5, 10, 15, (h) 

20, 25, 30 

neurons in a 

single layer 

• Increasing the number of 
neurons from 5 to 10 

increases the weighted 

average accuracy and 
decreases the accuracy 

spread. 

• Using 10 neurons in the 

hidden layer gives the 
highest weighted average 

accuracy values. 

• Increasing the number of 

neurons from 10 to up to 30 

shows a decreasing trend in 
the weighted average 

accuracy. 

• The ML model with 10 
neurons gives the highest 

weighted average 

accuracy, experiences 
large oscillations in the 

power and does not 

reach steady state 
operation. 

• Using 20 neurons in the 

hidden layer 

significantly improved 

the robustness of the 
controller’s response, 

eliminated oscillations, 

with the controller 
leveling off at a constant 

power below the setpoint 

of 10 MW 

Number of 

Hidden Layers 

in Neural 

Network  

• (a) 2 Layers, 

10 
neurons/layer 

• (g) 2 Layers, 

20 

neurons/layer 

• (d) 3 Layers, 
10 

neurons/layer 

• Increased number of hidden 

layers from 1 to 2 slightly 
increases the weighted 

average accuracy and 

decreases the spread in 
values. 

• Increasing the number of 

hidden layers from 2 to 3 

gives similar weighted 

average accuracy as the 2-
layer cases. 

• Using 2 layers, 10 

neurons/layer gives 
superior performance 

compared to 1 layer of 

20 neurons, but the 
controller moves control 

rods at slower rate. 

• With 20 neurons/layer 

the controller both 

underestimates the final 
reactor power and 

experiences more power 

oscillations. 

• With 3 layers, 10 
neurons/layer the 

controller withdraws 

control rods faster than 
with 2 layers, 10 

neurons/layer. 

Additional 

Input 

Parameters 

(Features) 

• Derivatives of 

features, 

dPRx/dt, 
dTin/dt, 

dTex/dt, dṁ/dt 

• ρtotal 

• (b) Δρex 

• Δρex and Δρfb 

• (f) Replace PSP 

with (QRx – 
PSP) 

• Added features minor impact 

the weighted average 

accuracy for the testing cases 

• With added derivatives 

of the primary features 

the controller shut down 
the reactor. 

• Including ρtotal as a 

feature also resulted in 

shutdown the reactor, 

• With Δρex additional 
feature the controller 

performance improves, 



Parameter 

Investigated 
Values ML Training Results 

Real-Time Controller 

Results 

• (e) Δρex and 
dPRx/dt 

• Δρex and time 

tracking closer to the 

desired ramp rate. 

• Adding both Δρex and 

Δρfb as additional 
features caused the 

controller to oscillate the 

power. 

• Replacing the power 
setpoint PSP with the 

difference between the 

reactor power and 

setpoint (QRx – PSP) 
slightly helped the 

controller to reach the 

correct final power but 
increased the mismatch 

of the increased power 

rate. 

• With both Δρex and 

dPRx/dt additional 
features the controller 

increases the power at a 

remarkably high rate and 
overshoots the setpoint 

power. 

• With Δρex and the 

simulation time added 
features the controller 

initially increases the 

power rapidly, then shut 

down the reactor to a 
subcritical state. 

 

Figures 12 and 13 present selected examples of the testing results. The plots in Fig. 12 are for a 

training case with 1 hidden layer, 15 neurons/layer and a randomly selected group of 51 training cases, 9 

validation data sets, and 100 testing sets. The presented results are for a learning rate of 0.001 and 

randomly shuffled training data sets. The red stars along the bottom axes of Figs. 12c and 12d show the 

number of testing cases for the values of PSP,2 and PSP,1. The training loss decreases to ~ 1x10-3 after 3 

epochs with little change thereafter, the validation loss oscillates, and the predictions of the control rod 

displacement for one of the testing cases are in the good agreement of the values determined by the 

trained neural network.  

Figs. 12c and 12d show the accuracy values plotted in increasing order for the final and initial power 

setpoints PSP,2 and PSP,1, respectively. The accuracy values show a spread between a minimum of 99.43% 



and maximum of 99.93% for the 100 testing data sets cases. The average accuracy, weighted by the two 

power setpoints, are comparable, 99.82 and 99.86%.  

Figure 13 compares the testing results for varying neurons structures and number of data sets per final 

power setpoint, PSP,2 used for training. The cases with 2 data sets per setpoint power include 88 training 

sets, 10 validation sets, and 100 testing sets. The cases with 2 data sets per setpoint power includes 198 

sets for training, 20 sets for validation and 100 training data sets. Changing the number of hidden layers 

of neurons from one to two (Fig. 9), for the case with 2 data sets per power level, increases the weighted 

average accuracy from 99.85% to 99.90% (Figs. 13a and b) and reduces the spread of the accuracy 

values, with the highest and lowest are 99.95% and 99.79%. Increasing the number of data sets per 

setpoint power in the training data sets slightly decreases the weighted average testing accuracy to 99.8% 

(Figs. 13c and d). It also increases the spread in the testing accuracy values for the same final or initial 

reactor power setpoint. 

 
Fig. 12: ML training and testing results for 1 hidden layer, 15 neurons/layer, LR = 0.001 and randomly 

shuffled training data sets. 
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Fig. 13: Comparison of ML testing results for 1 layer, 20 neurons/layer and 2 layers, 10 neurons/layer, 

and 2 and 5 data sets per final power setpoint, PSP,2. 

5.2.1 Real-Time Testing of the Controller 

Although the presented ML testing results show that the trained neural network can achieve a high 

weighted average accuracy of up to 99.9%, identifying which neural network will perform best requires 

evaluating their performance for real-time control of the VSLLIM Simulink model. The selected trained 

neural networks with high weighted average accuracies are integrated into a controller program coupled 

to the VSLLIM Simulink model. This is done using the LOBO Nuclear CyberSecurity (NCS) platform, 

developed by UNM-ISNPS in collaboration with Sandia National Laboratory [El-Genk and Schriener 

2022a; Schriener and El-Genk 2022; El-Genk, Altamimi, and Schriener 2021; El-Genk and Schriener 

2022b]. This platform’s capabilities have been demonstrated for emulating autonomous control of a 

representative nuclear reactor power plant and investigating the response of the plant’s digital control 
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while under simulated cyberattacks. The LOBO NCS platform communicates between the computer 

running the controller program and the server running the real-time MATLAB Simulink model of the 

VSLLIM reactor. Such communication uses the Modbus Industrial Control System (ICS) communication 

protocol through an isolated Ethernet test network. The LOBO NCS platform synchronizes the timing of 

the VSLLIM MATLAB Simulink model to a real-time clock such that 20 ms simulation timestep takes 20 

ms of physical wall time. 

The trained neural networks using the data sets generated by the VSLLIM Simulink model for 

simulated startup transients are incorporated into a python controller program run on a fast Windows 

server. It communicates with the VSLLIM Simulink model running on an Ubuntu Linux server. The 

LOBO NCS platform receives the calculated operation parameters from the Simulink model at the end of 

each simulation timestep and writes them to the Modbus holding registers of the python controller 

program. In each repeated controller cycle, the program reads the simulation operation parameter values 

stored in Modbus holding registers and passes the generated data to the neural network to predict the 

control rods displacement. It also writes the control rods movement needed to the output Modbus holding 

registers to then be communicated back to the VSLLIM Simulink model to change the placement of the 

reactor control rods, commensurate with the external reactivity insertion in the reactor core.  

 

Fig. 14: Comparison of reactor power increase following setpoint change from 1 to 10 MWth for trained 

real-time AI controller cases (a)-(d) in Table 1. 
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Testing results of the timing of the communication between the controller and the Simulink model 

determined that the controller’s response to the transmitted values of the system parameters is commonly 

received by the Simulink model with a delay of 1-2, 20 ms timesteps. Thus, the controller can maintain a 

timely feedback response to the simulated startup transient given that the operation parameters do not 

change significantly during the delay period of 20 - 40 ms. The values received by the controller from the 

Simulink model during the last 20 timestep are set as lookback window sequence. In each controller cycle 

these values are passed to the neural network to determine the predicted rod displacement from the output 

layer of the neural network (Fig. 11).  

 

Fig. 15: Comparison of reactor power increase following setpoint change from 1 to 10 MWth for trained 

real-time AI controller cases (e)-(h) in Table 1. 
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reactor power to increase faster than the reference training data indicated by the red color curve in the 

Figure. Increasing the number of hidden layers of the ML algorithm (Fig. 11) from 2 (case c) to 3 (case d) 

causes the controllers to increase the reactor power more rapidly but at different rates, although the final 

steady state powers reached by AI controller are the same in the two cases.  

Comparing cases (a) and (b) in Fig. 14 show that adding ρex as additional feature causes the controller 

to track the correct reactor thermal power during the first 6,000 s following the change in the power 

setpoint, then the reactor power levels off at a low steady state value of only 6.37 MWth, well below the 

setpoint of 10 MWth. Case (e) in Fig. 15 includes the derivative of the reactor power and the external 

reactivity as additional features in the training date sets of the ML algorithm. The AI controller increases 

the reactor thermal power too quickly and overshoots the steady state reactor power to 13 MWth. 

Changing the power setpoint to be the difference between the reactor power and the setpoint power (case 

f), decreases slightly the rate of increasing the reactor power compared to the actual rate and does not 

match the final power setpoint of 10 MWth. The algorithms with 20 neurons/layer and 2 hidden layers (g) 

and 1 hidden layer (h) reach steady state reactor thermal power values below the setpoint power of 10 

MWth.  

The obtained results so far show that supervised learning of the neural network using the LSTM 

algorithm show that the AI controller’ response is highly sensitive to the training parameters. The 

obtained cases with minor differences in the ML testing accuracy give significant differences in the AI 

controller’s responses, compared to the actual obtained using the VSLLIM transient model. Training the 

neural network therefore requires not only training ML algorithm  using the generated transient data sets, 

but also reinforcing learning to improve the controller performance to match that generated by the 

developed VSLLIM model. This will be the focus of the present research in the next quarter. 

6. Summary and Conclusions 

This work developed, trained and evaluated an AI controller of the control rods displacement in the 

VSLLIM microreactor during simulated startup transients using a LSTM ML algorithm. The developed 

dynamic, physics-based model of the VSLLIM microreactor using the MATLAB Simulink platform 

simulates operation transients such as startup, shutdown, and changes in the reactor power level. In 

addition, the developed Programmable Logic Controllers for the VSLLIM transient model control the 

movement of the reactor control rods and ESD assembly in the reactor core and for adjusting the Na/Na 

HEX mass flow rate at a constant reactor inlet temperature of 610 K. To date the developed VSLLIM 

transient model and controllers are used to generate 797 startup transient data sets containing more than 

956 million data values of the of the operation parameters of the reactors, .  

The generated data sets are used to train the artificial neural network for the AI controller using an 

ML supervised training program using the LSTM model in the Pytorch 2.2 library. Parametric analyses 



investigated the effects of a wide range of training parameters, neuron structures, and training features the 

accuracy of the predicted control rods displacement and on the performance of the trained neural network 

integrated into an AI controller program. The AI controller coupled to the VSLLIM transient model using 

the LOBO NCS platform investigated the behavior of the trained neural network while receiving real-time 

feedback for displacing the reactor control rods. 

The results for the trained neural networks integrated into the AI controller program show that 

achieving high ML testing accuracy with supervised learning from transient data sets does not necessarily 

result in a good real-time control performance for the trained neural network. Testing of the trained AI 

controllers with one layer of 10 neurons showed a weighted average accuracy of 99.9% but the AI 

controllers displaced the rods causing large oscillations of the reactor power. In the neural network 

structures, changing the arrangements and the number of neurons to either 1 layer of 20 neurons, 2 layers 

of 10 neurons/layer, or 3 payers of 10 neurons/layer eliminated the oscillatory behavior of the controller. 

The neural network structure with two layers and 10 neurons per layer provided the best performance in 

terms of the weighted average testing accuracy. Results also show that the proper choice of the features in 

the training data sets is essential realizing good real time controller performance, and that adding 

additional features in the training data sets can negatively impact the controller prediction and response. 

 

Fig. 16: Block diagram of the AI Controller with Reinforcement Learning function 
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model’s response. Fig. 16 shows a block diagram of the planned controller scheme with reinforcement 

learning function. The LSTM neural network will be based on a 2 layer, 10 neurons/layer structure, 

identified in the completed work so far to give the best performance The Supervised Learning ML 

algorithm will pre-train the neural network using the training data sets to determine the initial values of 

the weights and biases between the neurons as a function of time during simulated startup transients of the 

VSLLIM microreactor. 

The reinforcement leaning structure of the controller (Fig. 16) will couple the connect the LSTM 

neural network to the VSLLIM transient Simulink model using the LOBO NCS platform. In each 

controller cycle, the calculated operation parameters by the VSLLIM transient model will be 

communicated to an Interpreter function  to compare values of the state variables to the reference values 

in the training data sets (Fig. 16). The Interpreter provides feedback to the LSTM neural network using a 

reward function calculated based on the present and reference values of the operation parameters. In each 

controller cycle, reinforcement learning will adjust the neurons’ weights and biases to maximize this 

reward function. The adjusted neural network will then correct the displacement of the reactor control 

rods. The controller will be trained using the different startup transient of the VSLLIM reactor to help the 

reinforcement learning optimize the controller’ response. Future work will also investigate integrating the 

optimized AI controller into a remote-control system for a distant human operator to monitor and control 

the VSLLIM transient model and its autonomous control through a secure, encrypted connection. 
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